Skip to main content
Log in

Probiotic Supplementation Influences the Diversity of the Intestinal Microbiota During Early Stages of Farmed Senegalese Sole (Solea senegalensis, Kaup 1858)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Ingestion of bacteria at early stages results in establishment of a primary intestinal microbiota which likely undergoes several stages along fish life. The role of this intestinal microbiota regulating body functions is crucial for larval development. Probiotics have been proved to modulate this microbiota and exert antagonistic effects against fish pathogens. In the present study, we aimed to determine bacterial diversity along different developmental stages of farmed Senegalese sole (Solea senegalensis) after feeding probiotic (Shewanella putrefaciens Pdp11) supplemented diet for a short period (10–30 days after hatching, DAH). Intestinal lumen contents of sole larvae fed control and probiotic diets were collected at 23, 56, 87, and 119 DAH and DNA was amplified using 16S rDNA bacterial domain-specific primers. Amplicons obtained were separated by denaturing gradient gel electrophoresis (DGGE), cloned, and resulting sequences compared to sequences in GenBank. Results suggest that Shewanella putrefaciens Pdp11 induces a modulation of the dominant bacterial taxa of the intestinal microbiota from 23 DAH. DGGE patterns of larvae fed the probiotic diet showed a core of bands related to Lactobacillus helveticus, Pseudomonas acephalitica, Vibrio parahaemolyticus, and Shewanella genus, together with increased Vibrio genus presence. In addition, decreased number of clones related to Photobacterium damselae subsp piscicida at 23 and 56 DAH was observed in probiotic-fed larvae. A band corresponding to Shewanella putrefaciens Pdp11 was sequenced as predominant from 23 to 119 DAH samples, confirming the colonization by the probiotics. Microbiota modulation obtained via probiotics addition emerges as an effective tool to improve Solea senegalensis larviculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahire JJ, Mokashe NU, Patil HJ, Chaudhari BL (2013) Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6. J Food Sci Technol MYSORE 50:26–34

    Article  CAS  Google Scholar 

  • Arijo S, Chabrillón M, Díaz-Rosales P, Rico RM, Martínez-Manzanares E, Balebona MC, Toranzo AE, Moriñigo MA (2005) Bacteria isolated from outbreaks affecting cultured sole, Solea senegalensis (Kaup). Bull Eur Assoc Fish Pathol 25:148–154

    Google Scholar 

  • Askarian F, Kousha A, Salma W, Ringø E (2011) The effect of lactic acid bacteria administration on growth, digestive enzyme activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso) fry. Aquacult Nutr 17:488–497

    Article  Google Scholar 

  • Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringø E (2012) Culturable autochthonous bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326–329:1–8

    Article  Google Scholar 

  • Avella MA, Gioacchini G, Decamp O, Makridis P, Bracciatelli C, Carnevali O (2010) Application of multi-species of Bacillus in sea bream larviculture. Aquaculture 305:12–19

    Article  Google Scholar 

  • Avella MA, Olivotto I, Silvi S, Ribecco C, Cresci A, Palermo F, Polzonetti A, Carnevali O (2011) Use of Enterococcus faecium to improve common sole (Solea solea) larviculture. Aquaculture 315:384–393

    Article  Google Scholar 

  • Beganović J, Frece J, Kos B, Pavunc AL, Habjanič K, Šušković J (2011) Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. Anton Leeuw J Microbiol 100:43–53

    Article  Google Scholar 

  • Beganovic J, Kos B, Pavunc AL, Uroic K, Dzidara P, Suskovic J (2013) Proteolytic activity of probiotic strain Lactobacillus helveticus M92. Anaerobic 20:58–64

    Article  CAS  Google Scholar 

  • Bjornsdottir R, Johannsdottir J, Coe J, Smaradottir H, Agustsson T, Sigurgisladottir G (2009) Survival and quality of halibut larvae (Hippoglossus hippoglossus L.) in intensive farming: possible impact of the intestinal bacterial community. Aquaculture 286:53–63

    Article  Google Scholar 

  • Cañavate JP, Fernández-Díaz C (1999) Influence of co-feeding larvae with live and inert diets on weaning the sole Solea senegalensis onto commercial dry feeds. Aquaculture 174:255–263

    Article  Google Scholar 

  • Carnevali O, Zamponi MC, Sulpizio R, Rollo A, Nardi M, Orpianeso C, Silvi S, Caggiano M, Polzonetti AM, Cresci A (2004) Administration of probiotic strain to improve sea bream wellness during development. Aquacult Int 12:377–386

    Article  Google Scholar 

  • Carnevali O, de Vivo L, Sulpizio R, Gioacchini G, Olivotto I, Silvi S, Cresci A (2006) Growth improvement by probiotic in European sea bass juveniles (Dicentrarcus labrax, L.) with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture 258:430–438

    Article  CAS  Google Scholar 

  • Cecchini F, Iacumin L, Fontanot M, Comi G, Manzano M (2012) Identification of the unculturable bacteria Candidatus arthromitus in the intestinal content of trouts using Dot blot and Southern blot techniques. Vet Microbiol 156:389–394

    Article  CAS  PubMed  Google Scholar 

  • Chabrillón M, Rico S, Balebona MC, Moriñigo MA (2005a) Adhesion to sole, Solea senegalensis Kaup, mucus of microorganisms isolated from farmed fish, and their interaction with Photobacterium damselae subsp. piscicida. J Fish Dis 28:229–237

    Article  PubMed  Google Scholar 

  • Chabrillón M, Rico RM, Arijo S, Diaz-Rosales P, Balebona MC, Moriñigo MA (2005b) Interactions of microorganisms isolated from gilthead seabream, Sparus aurata L., on Vibrio harveyi, a pathogen of farmed Senegalese sole, Solea senegalensis (Kaup). J Fish Dis 28:531–537

    Article  PubMed  Google Scholar 

  • Chackraborty RD, Surendran PK (2009) incidence and molecular typing of Vibrio parahaemolyticus from tiger shrimp culture environments along the Southwest coast of India. Food Biotechnol 23:284–311

    Article  Google Scholar 

  • Chen Q, Yan Q, Wang K, Zhuang Z, Wang X (2008) Portal of entry for pathogenic Vibrio alginolyticus into large yellow croaker Pseudosciaena crocea, and characteristics of bacterial adhesion to mucus. Dis Aquat Org 80:181–188

    Article  PubMed  Google Scholar 

  • Conceicao LEC, Ribeiro L, Engrola S, Aragao C, Morais S, Lacuisse M, Soares F, Dinis MT (2007) Nutritional physiology during development of Senegalese sole (Solea senegalensis). Aquaculture 268:64–81

    Article  CAS  Google Scholar 

  • Dámaso-Rodrigues ML, Pousão-Ferreira P, Ribeiro L, Coutinho J, Bandarra NM, Gavaia PJ, Narciso L, Morais S (2010) Lack of essential fatty acids in live feed during larval and post-larval rearing: effect on the performance of juvenile Solea senegalensis. Aquacult Int 18:741–757

    Article  Google Scholar 

  • De Paula Silva FC, Nicoli JR, Zambonino-Infante JL, Kaushik S, Gatesoupe FJ (2011) Influence of the diet on the microbial diversity of faecal and gastrointestinal contents in gilthead seabream (Sparus aurata) and intestinal contents in goldfish (Carassius auratus). FEMS Microbiol Ecol 78:285–296

    Article  Google Scholar 

  • De Schryver P, Sinha AK, Kunwar PS, Baruah K, Verstraete W, Boon N, Gudrun De Boeck G, Bossier P (2010) Poly-β hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl Microbiol Biotechnol l86:1535–1541

    Article  Google Scholar 

  • Dias DC, Correa CF, Leonardo AFG, Tachibana L, Romagosa E, Ranzani-Paiva MJT (2011) Probiótico na larvicultura de matrinxa, Brycon amazonicus. Acta Sci 33:365–368

    Google Scholar 

  • Díaz-Rosales P, Arijo S, Chabrillón M, Alarcón FJ, Tapia-Paniagua ST, Martínez-Manzanares E, Balebona MC, Moriñigo MA (2009) Effects of two closely related probiotics on respiratory burst activity of Senegalese sole (Solea senegalensis, Kaup) phagocytes, and protection against Photobacterium damselae subsp. piscicida. Aquaculture 293:16–21

    Article  Google Scholar 

  • Dock-Nascimento DB, Junqueira K, Aguilar-Nascimento JE (2007) Rapid restoration of colonic globet cells induced by a hydrolyzed diet containing probiotics in experimental malnutrition. Acta Cir Bras 22:72–76

    Article  PubMed  Google Scholar 

  • Engrola S, Figueira L, Conceição LEC, Gavaia PJ, Ribeiro L, Dinis MT (2009) Co-feeding in Senegalese sole larvae with inert diet from mouth opening promotes growth at weaning. Aquaculture 288:264–272

    Article  Google Scholar 

  • Ferguson RMW, Merrifield DL, Harper GM, Rawling MD, Mustafa S, Picchietti S, Balcázar JL, Davies SJ (2010) The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J Appl Microbiol 109:851–862

    Article  CAS  PubMed  Google Scholar 

  • García de la Banda I, Lobo C, León-Rubio JM, Tapia-Paniagua ST, Balebona MC, Moriñigo MA, Moreno-Ventas X, Lucas LM, Linares F, Arce F, Arijo S (2010) Influence of two closely related probiotics on juvenile Senegalese sole (Solea senegalensis, Kaup 1858) performance and protection against Photobacterium damselae subsp piscicida. Aquaculture 306:281–288

    Article  Google Scholar 

  • García de la Banda I, Lobo C, Chabrillón M, León-Rubio JM, Arijo S, Pazos G, Lucas LM, Moriñigo MA (2012) Influence of dietary administration of a probiotic on Senegalese sole (Solea senegalensis, Kaup, 1858) on growth, body composition and resistance to Photobacterium damselae subsp. piscicida. Aquac Res 43(5):662–669

    Article  Google Scholar 

  • Gatesoupe FJ (2008) Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 14:107–114

    Article  CAS  PubMed  Google Scholar 

  • Gray JP, Herwig RP (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 62:4049–4059

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hansen GH, Olafsen JA (1999) Bacterial interactions in early life stages of marine cold water fish. Microb Ecol 38:1–26

    Article  PubMed  Google Scholar 

  • Hernández-Martínez M, Castro-Barrera T, Garduño-Dionate M, Castro-Mejía G, Baltierra-Rodríguez JL (2009) Efecto del alimento vivo enriquecido con Lactobacillus casei en la sobrevivencia y crecimiento de larvas y juveniles de Chirostoma estor (Pisces: Atherinopsidae). Cienc Pesq 17:5–12

    Google Scholar 

  • Hicks RE, Amann RI, Stahl DA (1992) Dual staining of natural bacterioplankton with 4′6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol 58:2158–2163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Høj L, Bourne DG, Hall MR (2009) Localization, abundance and community structure of bacteria associated with Artemia: effects of nauplii enrichment and antimicrobial treatment. Aquaculture 293:278–285

    Article  Google Scholar 

  • Ingerslev H-C, von Gersdorff Jorgensen L, Lenz-Strube M, Larsen N, Dalsgaard I, Boyne M, Madsen L (2014) The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 424–425:24–34

    Article  Google Scholar 

  • Kane MD, Poulsen LK, Stahl DA (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59:682–686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khuntia C, Das B, Samantaray BR, Samal SK, Mishra B (2008) Characterization and pathogenicity studies of Vibrio parahaemolyticus isolated from diseased freshwater prawn, Macrobrachium rosenbergii (de Man). Aquac Res 39:301–310

    Article  Google Scholar 

  • Kumar NR, Raman RP, Jadhao SB, Brahmchari RK, Kumar K, Dash G (2013) Effect of dietary supplementation of Bacillus licheniformis on gut microbiota, growth and immune response in giant freshwater prawn, Macrobachium rosenbergii (de Man, 1879). Aquacult Int 21:387–403

    Article  Google Scholar 

  • Lobo C, Moreno-Ventas X, Tapia-Paniagua ST, Rodriguez C, Moriñigo MA, Garcia de La Banda I (2014) Dietary probiotic supplementation (Shewanella putrefaciens Pdp11) modulates gut microbiota and promotes growth and condition in Senegalese sole larviculture. Fish Physiol Biochem 40:295–309

    Article  CAS  PubMed  Google Scholar 

  • Lund I, Steenfeldt SJ, Hansen BW (2007) Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae of common sole (Solea solea L.). Aquaculture 273:532–544

    Article  CAS  Google Scholar 

  • Magnadottir B (2010) Immunological control of fish diseases. Mar Biotechnol 12:361–379

    Article  CAS  PubMed  Google Scholar 

  • Mai M, Engrola S, Morais S, Portella MC, Verani JR, Dinis MT, Conceição L (2009) Co-feeding of live feed and inert diet from first-feeding affects Artemia lipid digestibility and retention in Senegalese sole (Solea senegalensis) larvae. Aquaculture 296:284–291

    Article  Google Scholar 

  • Martín-Antonio B, Manchado M, Infante C, Zerolo R, Labella A, Alonso MC, Borrego JJ (2007) Intestinal microbiota variation in Senegalese sole (Solea senegalensis) under different feeding regimes. Aquac Res 38:1213–1222

    Article  Google Scholar 

  • Martínez G, Shaw EM, Carrillo M, Zanuy S (1998) Protein salting-out method applied to genomic DNA isolation from fish whole blood. Biotechniques 24:138–139

    Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  PubMed  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Castex M, Ringø E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18

    Article  Google Scholar 

  • Montes M, Farto R, Pérez MJ, Armada S, Nieto T (2006) Genotypic diversity of Vibrio isolates associated with turbot (Scophthalmus maximus) culture. Res Microbiol 157:487–495

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Navarrete P, Magne F, Mardones P, Riveros M, Opazo R, Suau A, Pochart P, Romero J (2010) Molecular analysis of intestinal microbiota of rainbow trout (Oncorhynchus mykiss). FEMS Microbiol Ecol 71:148–156

    Article  CAS  PubMed  Google Scholar 

  • Parra G, Yúfera M (1999) Tolerance response to ammonia and nitrite exposure in larvae of two marine fish species (gilthead seabream Sparus aurata L. and Senegal sole Solea senegalensis Kaup). Aquac Res 30:857–863

    Article  Google Scholar 

  • Picchietti S, Mazzini M, Taddei AR, Renna R, Fausto AM, Mulero V, Carnevali O, Cresci A, Abelli L (2007) Effects of administration of probiotic strains on GALT of larval gilthead seabream: immunohistochemical and ultrastructural studies. Fish Shellfish Immunol 22:57–67

    Article  CAS  PubMed  Google Scholar 

  • Ramirez RF, Dixon BA (2003) Enzyme production by obligate intestinal anaerobic bacteria isolated from Oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma). Aquaculture 227:417–426

    Article  CAS  Google Scholar 

  • Ringø E, Jutfelt F, Kanapathippillai P, Bakken Y, Sundell K, Glette J, Mayhew TM, Myklebust R, Olsen RE (2004) Damaging effect of the fish pathogen Aeromonas salmonicida ssp. salmonicida on intestinal enterocytes of Atlantic salmon (Salmo salar L.). Cell Tissue Res 318:305–311

    Article  PubMed  Google Scholar 

  • Ringø E, Myklebust R, Mayhew TM, Olsen RE (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268:251–264

    Article  Google Scholar 

  • Rodríguez C, Lorenzo A, Martín V (2009) Nutrición lipídica. In: OESA, CSIC, MARM (Eds) La nutrición y la alimentación en piscicultura, Madrid

  • Rombout JHWM, Abelli L, Picchietti S, Scapigliati G, Kiron V (2011) Teleost intestinal immunology. Fish Shellfish Immunol 31:616–626

    Article  CAS  PubMed  Google Scholar 

  • Sáenz de Rodrigáñez MA, Díaz-Rosales P, Chabrillón M, Smidt H, Arijo S, León-Rubio JM, Alarcón FJ, Balebona MC, Moriñigo MA, Cara JB, Moyano FJ (2009) Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquacult Nutr 15:177–185

    Article  Google Scholar 

  • Sanguinetti CJ, Dias-Neto E, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques 17:915–919

    Google Scholar 

  • Sekirov I, Finlay BB (2009) The role of the intestinal microbiota in enteric infection. J Physiol 587:4159–4167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugita H, Nakamura T, Tanaka K, Deguchi Y (1994) Identification of Aeromonas species isolated from freshwater fish with the microplate hybridization method. Appl Environ Microbiol 60:3036–3038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun YZ, Yang HL, Huang KP, Ye JD, Zhang CX (2013) Application of autochthonous Bacillus bioencapsulated in copepod to grouper Epinephelus coioides larvae. Aquaculture 392:44–50

    Article  Google Scholar 

  • Tanu DDD, Khandeparker R, Sreepada RA, Sanaye SV, Pawar HB (2012) A study on bacteria associated with the intestinal tract of farmed yellow seahorse, Hippocampus kuda (Bleeker, 1852): characterization and extracellular enzymes. Aquac Res 43:386–394

    Article  Google Scholar 

  • Tapia-Paniagua ST, Chabrillón M, Díaz-Rosales P, García de la Banda I, Lobo C, Balebona MC, Moriñigo MA (2010) Intestinal microbiota diversity of the flat fish Solea senegalensis (Kaup, 1858) following probiotic administration. Microbiol Ecol 60:310–319

    Article  Google Scholar 

  • Taverniti V, Stuknyte M, Minuzzo M, Arioli S, de Noni I, Scabiosi C, Cordova ZM, Junttila I, Hamalainen S, Turpeinen H, Mora D, Karp M, Pesu M, Guglielmetti S (2013) S-Layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity. Appl Environ Microbiol 79:1221–1231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tinh NTN, Dierckens K, Sorgeloos P, Bossier P (2008) A review of the functionality of probiotics in the larviculture food chain. Mar Biotechnol 10:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tkavc R, Gostinčar C, Turk M, Pieter T, Visscher PT, Oren A, Gunde-Cimerman N (2011) Bacterial communities in the 'petola' microbial mat from the Sečovlje salterns (Slovenia). FEMS Microbiol Ecol 75:48–62

    Article  CAS  PubMed  Google Scholar 

  • Urdaci MC, Regnault B, Grimont PAD (2001) Identification by in situ hybridization of segmented filamentous bacteria in the intestine of diarrheic rainbow trout (Oncorhynchus mykiss). Res Microb 152:67–73

    Article  CAS  Google Scholar 

  • Van der Gast CJ, Jefferson B, Reid E, Robinson T, Bailey MJ, Judd SJ, Thompson IP (2006) Bacterial diversity is determined by volume in membrane bioreactors. Environ Microbiol 8:1048–1055

    Article  PubMed  Google Scholar 

  • Villamil L, Figueras A, Planas M, Novoa B (2003a) Control of Vibrio alginolyticus in Artemia culture by treatment with bacterial probiotics. Aquaculture 219:43–56

    Article  Google Scholar 

  • Villamil L, Figueras A, Toranzo AE, Planas M, Novoa B (2003b) Isolation of a highly pathogenic Vibrio pelagius strain associated with mass mortalities of turbot, Scophthalmus maximus (L.), larvae. J Fish Dis 26:293–303

    Article  CAS  PubMed  Google Scholar 

  • Vinderola G, Matar C, Palacios J, Perdigon G (2007) Mucosal immunomodulation by the non-bacterial fraction of milk fermented by Lactobacillus helveticus. Int J Food Microbiol 115:180–186

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CE, Collins JB, Jakabhazy VD, Li XW, Macomber SA, Wu YC (1997) Inversion of the Li-Strahler canopy reflectance model for mapping forest structure. IEEE Trans Geosci Remote Sens 35:405–414

    Article  Google Scholar 

  • Yang HL, Sun YZ, Ma RL, Ye JD (2012) PCR-DGGE analysis of the autochtonous gut microbiota of grouper Epinephelus coioides following probiotic Bacillus clausii administration. Aquacult Res 43:489–497

    Article  CAS  Google Scholar 

  • Zarza C, Padrós F (2008) An overview of diseases of farmed sole. Abstr IV Internat Sole Work. Faro, Portugal: 15

  • Zorrilla I, Moriñigo MA, Castro D, Balebona MC, Borrego JJ (2003) Intraspecific characterization of Vibrio alginolyticus isolates recovered from cultured fish in Spain. J Appl Microbiol 95:1106–1116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors received the financial support from the Ministerio Español de Ciencia y Tecnología (AGL2011-30381-C03-02). S. Tapia-Paniagua wishes to thank the Ministerio Español de Educación y Ciencia for a F.P.U. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carmen Balebona.

Additional information

Silvana Tapia-Paniagua and Carmen Lobo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia-Paniagua, S., Lobo, C., Moreno-Ventas, X. et al. Probiotic Supplementation Influences the Diversity of the Intestinal Microbiota During Early Stages of Farmed Senegalese Sole (Solea senegalensis, Kaup 1858). Mar Biotechnol 16, 716–728 (2014). https://doi.org/10.1007/s10126-014-9588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9588-6

Keywords

Navigation