Skip to main content
Log in

Deep-sea Rhodococcus sp. BS-15, Lacking the Phytopathogenic fas Genes, Produces a Novel Glucotriose Lipid Biosurfactant

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Glycolipid biosurfactant-producing bacteria were isolated from deep-sea sediment collected from the Okinawa Trough. Isolate BS15 produced the largest amount of the glycolipid, generating up to 6.31 ± 1.15 g l−1 after 4 days at 20 °C. Glucose was identified in the hydrolysate of the purified major component of the biosurfactant glycolipid. According to gas chromatography/mass spectrometry analysis, the hydrophobic moieties in the major component were hexadecanoate, octadecanoate, 3-hydroxyhexadecanoate, 2-hydroxyoctanoate, and succinate. The molecular weight of the purified major glycolipid was calculated to be 1,211, while 1H and 13C nuclear magnetic resonance spectra confirmed that the major component consisted of 2 mol of α-glucoside and 1 mol of β-glucoside. The molecular structure was assigned as novel trisaccharide-type glycolipid biosurfactant, glucotriose lipids. The critical micelle concentration of the purified major glycolipid was 2.3 × 10−6 M, with a surface tension of 29.5 mN m−1. Phylogenetic analysis showed isolate BS15 was closely related to a Rhodococcus strains isolated from Antarctica, and to Rhodococcus fascians, a phytopathogen. PCR analysis showed that the fasA, fasB, fasC, fasD, fasE, and fasF genes, which are involved in phytohormone-like cytokinin production, were not present in the genome of BS15; however, analysis of a draft genome sequence of BS15 (5.5 Mb) identified regions with 31 %, 53 %, 46 %, 30 %, and 31 % DNA sequence identity to the fasA, fasB, fasC, and fasD genes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold tolerant alkane-degrading Rhodoccocus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Crespi M, Messens E, Caplan AB, van Montagu M, Desomer J (1992) Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J 11:795–804

    PubMed Central  CAS  PubMed  Google Scholar 

  • Du H, Jiao N, Hu Y, Zeng Y (2006) Diversity and distribution of pigmented heterotrophic bacteria in marine environments. FEMS Microbiol Ecol 57:92–105

    Article  CAS  PubMed  Google Scholar 

  • Gesheva V, Stackebrandt E, Vasileva-Tonkova E (2010) Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr Microbiol 61:112–117

    Article  CAS  PubMed  Google Scholar 

  • Griffin WC (1949) Classification of surface-active agents by “HLB”. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  • Hatada Y, Mizuno M, Li Z, Ohta Y (2011) Hyper-production and characterization of the ι-carrageenase useful for ι-carrageenan oligosaccharide production from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94T, and insight into the unusual catalytic mechanism. Mar Biotechnol 13:411–422

    Article  CAS  PubMed  Google Scholar 

  • Hung VS, Hatada Y, Goda S, Lu J, Hidaka Y, Li Z, Akita M, Ohta Y, Watanabe K, Matsui H, Ito S, Horikoshi K (2005) alpha-Glucosidase from a strain of deep-sea Geobacillus: a potential enzyme for the biosynthesis of complex carbohydrates. Appl Microbiol Biotechnol 268:757–765

    Article  Google Scholar 

  • Izawa N, Hanamizu T, Iizuka R, Sone T, Mizukoshi H, Kimura K, Chiba K (2009) Streptococcus thermophilus produces exopolysaccharides including hyaluronic acid. J Biosci Bioeng 107:119–123

    Article  CAS  PubMed  Google Scholar 

  • Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279

    Article  Google Scholar 

  • Kawagucci S, Chiba H, Ishibashi J, Yamanaka T, Toki T, Muramatsu Y, Ueno Y, Makabe A, Inoue K, Yoshida N, Nakagawa S, Nunoura T, Takai K, Takahara N, Sano Y, Narita T, Teranishi G, Obata H, Gamo T (2011) Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: implication for origin of methane in subseafloor fluid circulation systems. Geochem J 45:109–124

    Article  CAS  Google Scholar 

  • Kitamoto D, Morita T, Fukuoka T, Konishi M, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Cur Opin Colloid Interface Sci 14:315–328

    Article  CAS  Google Scholar 

  • Kitamoto D, Haneishi K, Nakahara T, Tabuch T (1990) Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agric Biol Chem 54:37–40

    Article  CAS  Google Scholar 

  • Konishi M, Fukuoka T, Nagahama T, Morita T, Imura T, Kitamoto D, Hatada Y (2010) Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. J Biosci Bioeng 110:169–175

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Nagahama T, Fukuoka T, Morita T, Imura T, Kitamoto D, Hatada Y (2012) Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. J Biosci Bioeng 111:702–705

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Nogi Y, Ohta Y, Hatada Y, Fujiwara Y, Ito S, Horikoshi K (2008) Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 58:1128–1133

    Article  CAS  PubMed  Google Scholar 

  • Niescher S, Wray V, Lang S, Kaschabek SR, Schlömann M (2006) Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Appl Microbiol Biotechnol 70:605–611

    Article  CAS  PubMed  Google Scholar 

  • Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa Ramnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peeters K, Hodgson DA, Convey P, Willems A (2011) Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundström Lake (Shackleton Range), Antarctica. Microb Ecol 62:399–413

    Article  PubMed  Google Scholar 

  • Pertry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L, Temmerman W, Stes E, Schmülling T, Kakimoto T, Van Montagu MC, Strnad M, Holsters M, Tarkowski P, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci 106:929–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pertry I, Václavíková K, Gemrotová M, Spíchal L, Galuszka P, Depuydt S, Temmerman W, Stes E, De Keyser A, Riefler M, Biondi S, Novák O, Schmülling T, Strnad M, Tarkowski P, Holsters M, Vereecke D (2010) Rhodococcus fascians impacts plant development through the dynamic fas-mediated production of a cytokinin mix. Mol Plant Microbe Interact 23:1164–1174

    Article  CAS  PubMed  Google Scholar 

  • Pisabarro A, Correia A, Martín JF (1998) Pulsed-field gel electrophoresis analysis of the genome of Rhodococcus fascians: genome size and linear and circular replicon composition in virulent and avirulent strains. Curr Microbiol 36:302–308

    Article  CAS  PubMed  Google Scholar 

  • Poremba K, Gunkel W, Lang S, Wagner F (1991) Marine biosurfactants: III. Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Z Naturforsch C 46:210–216

    CAS  PubMed  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotropically heavy CH4 production by a hyperthermophilic metahnogen under high pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J Oleo Sci 58:97–102

    Article  CAS  PubMed  Google Scholar 

  • Passeri A, Schmidt M, Haffner T, Wray V, Lang S, Wagner F (1992) Marine biosurfactants. IV. Production, chnaracterization and biosynthesis of anionic glucose lipid from the marine bacterial strain MM1. Appl Microbiol Biotechnol 37:281–286

    Article  CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Käppeli O, Fiechter A (1986) Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol 51:985–989

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rispoli FJ, Badia D, Shah V (2010) Optimization of the fermentation media for sophorolipid production from Candida bombicola ATCC 22214 using a simplex centroid design. Biotechnol Prog 26:938–944

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Uchida Y, Misawa S, Nakahara T, Tabuchi T (1989) Factor affecting the production of succinoyl treharose lipids by Rhodoccocus erythropolis SD-74 grown on n-alkanes. Agric Biol Chem 53:765–769

    Article  CAS  Google Scholar 

  • Yeo ZX, Chan M, Yap YS, Ang P, Rozen S, Lee ASG (2012) Improving indel detection specificity of the Ion Torrent PGM bechtop sequencer. PLoS One 7:e45798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaragoza A, Aranda FJ, Espuny MJ, Teruel JA, Marqués A, Manresa A, Ortiz A (2009) Mechanism of membrane permeabilization by a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp. Langmuir 25:7892–7898

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the captains and crews of the R/V Natsushima and HyperDolphin for their technical expertise. We also thank Dr. Hiroko Makita of JAMSTEC for supporting the GC-MS analysis. This work was partially supported by KAKENHI (24681013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Konishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konishi, M., Nishi, S., Fukuoka, T. et al. Deep-sea Rhodococcus sp. BS-15, Lacking the Phytopathogenic fas Genes, Produces a Novel Glucotriose Lipid Biosurfactant. Mar Biotechnol 16, 484–493 (2014). https://doi.org/10.1007/s10126-014-9568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9568-x

Keywords

Navigation