Skip to main content
Log in

Identification of Quantitative Trait Loci Associated with Resistance to Viral Haemorrhagic Septicaemia (VHS) in Turbot (Scophthalmus maximus): A Comparison Between Bacterium, Parasite and Virus Diseases

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

One of the main objectives of genetic breeding programs in turbot industry is to reduce disease-related mortality. In the present study, a genome scan to detect quantitative trait loci (QTL) affecting resistance and survival to viral haemorrhagic septicaemia (VHS) was carried out. Three full-sib families with approximately 90 individuals each were genotyped and evaluated by linear regression and maximum likelihood approaches. In addition, a comparison between QTL detected for resistance and survival time to other important bacterial and parasite diseases affecting turbot (furunculosis and scuticociliatosis) was also carried out. Finally, the relationship between QTL affecting resistance/survival time to the virus and growth-related QTL was also evaluated. Several genomic regions controlling resistance and survival time to VHS were detected. Also significant associations between the evaluated traits and genotypes at particular markers were identified, explaining up to 14 % of the phenotypic variance. Several genomic regions controlling general and specific resistance to different diseases in turbot were detected. A preliminary gene mining approach identified candidate genes related to general or specific immunity. This information will be valuable to develop marker-assisted selection programs and to discover candidate genes related to disease resistance to improve turbot production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta F, Petrie A, Lockhart K, Lorenzen N, Ellis AE (2005) Kinetics of Mx expression in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar L.) Parr in response to VHS-DNA vaccination. Fish Shellfish Immunol 18:81–89

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Pellitero P (2008) Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Vet Immunol Immunopathol 126:171–198

    Article  PubMed  Google Scholar 

  • Aude-Garcia C, Collin-Faure V, Bausinger H, Hanau D, Rabilloud T, Lemercier C (2010) Dual roles for MEF2A and MEF2D during human macrophage terminal differentiation and c-Jun expression. Biochem J 430:237–244

    Article  CAS  PubMed  Google Scholar 

  • Barja JL (2004) In: Álvarez-Pellitero P, Barja JL, Basurco B, Berthe F, Toranzo AE (eds) Mediterranean aquaculture diagnostic laboratories. CIHEAM/FAO, Zaragoza. http://om.ciheam.org/article.php?IDPDF = 4600221

  • Bouza C, Hermida M, Millán A, Vilas R, Vera M, Fernández C, Pardo BG, Martínez P (2008) Characterization of EST-derived microsatellites for gene mapping and evolutionary genomics in turbot. Anim Genet 39:666–670

    Article  CAS  PubMed  Google Scholar 

  • Bouza C, Hermida M, Pardo BG, Fernández C, Castro J, Fortes GG, Sánchez L, Presa P, Pérez M, Sanjuán A, Comesaña S, Álvarez-Dios JA, Calaza M, Cal R, Piferrer F, Martínez P (2007) A microsatellite genetic map in the turbot (Scophthalmus maximus). Genetics 177:2457–2467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouza C, Hermida M, Pardo BG, Vera M, Fernández C, De La Herrán R, Navajas R, Álvarez-Dios JA, Gómez-Tato A, Martínez P (2012) An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. BMC Genet 13:54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Byon J, Ohira T, Hirono I, Aoki T (2006) Comparative immune responses in Japanese flounder, Paralichthys olivaceus, after vaccination with viral hemorrhagic septicemia virus (VHSV) recombinant glycoprotein and DNA vaccine using a microarray analysis. Vaccine 24:921–930

    Article  CAS  PubMed  Google Scholar 

  • Castric J, de Kinkelin P (1980) Occurrence of viral haemorrhagic septicaemia in rainbow trout Salmo gairdneri Richardson reared in sea-water. J Fish Dis 3:21–27

    Article  Google Scholar 

  • Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Rosales P, Romero A, Balseiro P, Dios S, Novoa B, Figueras A (2012) Microarray-based identification of differentially expressed genes in families of turbot (Scophthalmus maximus) after infection with viral haemorrhagic septicaemia virus (VHSV). Mar Biotechnol 14:515–529

    Article  PubMed  Google Scholar 

  • FAO (2010) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations

  • FEAP (2010) Production and price reports of member associations of the FEAP. Federation of European Aquaculture Producers

  • Fuji K, Hasegawa O, Honda K, Kumasaka K, Sakamoto T, Okamoto N (2007) Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 272:291–295

    Article  Google Scholar 

  • Fulton TW (1902) Rate of growth of seas fishes. Scientific Investigations. Fishery Division of Scotland: 1–22

  • Gilbert H, Le Roy P, Moreno C, Robelin D, Elsen JM (2008) QTLMAP, a software for QTL detection in outbred population. Ann Hum Genet 72:694

    Google Scholar 

  • Gjedrem T (2010) The first family-based breeding program in aquaculture. Rev Aquac 2:2–15

    Article  Google Scholar 

  • Gjerde B, Røer JE, Lein I, Stoss J, Refstie T (1997) Heritability for body weight in farmed turbot. Aquac Int 5:175–178

    Google Scholar 

  • Guyomard R, Boussaha M, Krieg F, Hervet C, Quillet Q (2012) A synthetic rainbow trout linkage map provides new insights into the salmonid whole genome duplication and the conservation of synteny among teleosts. BMC Genet 13:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19

    Article  CAS  PubMed  Google Scholar 

  • Henryon M, Berg P, Olesen NJ, Kjaer TE, Slierendrecht WJ, Jokumsen A, Lund I (2005) Selective breeding provides an approach to increase resistance of rainbow trout (Onchorhynchus mykiss) to the diseases, enteric redmouth disease, rainbow trout fry syndrome, and viral haemorrhagic septicaemia. Aquaculture 250:621–636

    Article  Google Scholar 

  • Henryon M, Jokumsenb A, Berga P, Lundb I, Pedersenb PB, Olesenc NJ, Slierendrechtc WJ (2002) Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout. Aquaculture 209:59–76

    Article  Google Scholar 

  • Hørlyck V, Mellergård S, Dalsgaard I, Jørgensen PEV (1984) Occurrence of VHSV in Danish maricultured rainbow trout. Bull Eur Ass Fish Pathol 4:11–13

    Google Scholar 

  • Houston RD, Haley CS, Hamilton A, Guy DR, Mota-Velasco JC, Gheyas AA, Tinch AE, Taggart JB, Bron JE, Starkey WG, McAndrew BJ, Verner-Jeffreys DW, Paley RK, Rimmer GSE, Tew IJ, Bishop SC (2009) The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL. Heredity 105:318–327

    Article  PubMed  Google Scholar 

  • Houston RD, Haley CS, Hamilton A, Guy DR, Tinch AE, Taggart JB, Mcandrew BJ, Bishop SC (2008) Major quantitative traits loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178:1109–1115

    Article  PubMed Central  PubMed  Google Scholar 

  • Isshiki T, Nishizawa T, Kobayashi T, Nagano T, Miyazaki T (2001) An outbreak of VHSV (viral hemorrhagic septicemia virus) infection in farmed Japanese flounder Paralichthys olivaceus in Japan. Dis Aquat Organ 47:87–99

    Article  Google Scholar 

  • Kao CH (2000) On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci. Genetics 156:855–865

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8:297–303

    Article  CAS  PubMed  Google Scholar 

  • Kin JA, Snow M, Skall HF, Raynard RS (2001) Experimental susceptibility of Atlantic salmon Salmo salar and turbot Scophthalmus maximus to European freshwater and marine isolates of viral haemorrhagic septicaemia virus. Dis Aquat Organ 47:25–31

    Article  CAS  PubMed  Google Scholar 

  • Knott SA, Elsen JM, Haley CS (1996) Methods for multiple marker mapping of quantitative trait loci in half-sib populations. Theor Appl Genet 93:71–80

    Article  CAS  PubMed  Google Scholar 

  • Li J, Boroevich KA, Koop BF, Davidson WS (2011) Comparative genomics identifies candidate genes for Infectious Salmon Anemia (ISA) resistance in Atlantic salmon (Salmo salar). Mar Biotechnol 13:232–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Vázquez C, Dopazo CP, Barja JL, Bandín I (2007) Experimental infection of turbot, Psetta maxima (L.), with strains of viral haemorrhagic septicaemia virus isolated from wild and farmed marine fish. J Fish Dis 30:303–312

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • MacDonald MR, Machlin ES, Albin OR, Levy DE (2007) The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against Alphaviruses. J Virol 81:13509–13518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • Martínez P, Bouza C, Hermida M, Fernández J, Toro MA, Vera M, Pardo BG, Millán A, Fernández C, Vilas R, Viñas A, Sánchez L, Felip A, Piferrer F, Ferreiro I, Cabaleiro S (2009) Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 183:1443–1452

    Article  PubMed Central  PubMed  Google Scholar 

  • Martínez P, Hermida M, Pardo BG, Fernández C, Castro J, Cal RM, Álvarez-Dios JA, Gómez-Tato A, Bouza C (2008) Centromere-linkage in the turbot (Scophthalmus maximus) through half-tetrad analysis in diploid meiogynogenetics. Aquaculture 280:81–88

    Article  Google Scholar 

  • Massault C, Franch R, Haley C, de Koning DJ, Bovenhyis H, Pellizzan C, Patarnello T, Bargelloni L (2011) Quantitative trait loci for resistance to fish pasteurellosis in gilthead sea bream (Sparus aurata). Anim Genet 42:191–203

    Article  CAS  PubMed  Google Scholar 

  • Massault C, Hellemans B, Louro B, Batargias C, Van Houdt JKJ, Canario A, Volckaert FAM, Bovenhuis H, Haley C, de Koning DJ (2010) QTL for body weight, morphometric traits and stress response in European sea bass Dicentrarchus labrax. Anim Genet 41:337–345

    CAS  PubMed  Google Scholar 

  • Meyers TR, Winton JR (1995) Viral hemorrhagic septicemia in North America. Ann Rev Fish Dis 5:3–24

    Article  Google Scholar 

  • Moen T, Baranski M, Sonesson AK, Kjøglum S (2009) Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics 10:368

    Article  PubMed Central  PubMed  Google Scholar 

  • Moen T, Sonesson AK, Hayes B, Lien S, Munck H, Meuwissen THE (2007) Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (Salmo Salar): comparing survival analysis with analysis on affected/resistant data. BMC Genet 8:53

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreno CR, Elsen JM, Le Roy P, Ducrocq V (2005) Interval mapping methods for detecting QTL affecting survival and time-to-event phenotypes. Genet Res Camb 85:139–149

    Article  CAS  Google Scholar 

  • Mortensen HF, Heuer OE, Lorenzen N, Otte L, Olesen NJ (1999) Isolation of viral haemorrhagic septicaemia virus (VHSV) from wild marine fish species in Baltic Sea, Kattegat, Skagerrak and the North Sea. Virus Res 63:95–106

    Article  CAS  PubMed  Google Scholar 

  • Ødegård J, Baranski M, Gjerde B, Gjedrem T (2011) Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquac Res 42:103–114

    Article  Google Scholar 

  • Ozaki A, Karaki K, Okamoto H, Mokauchi M, Mushiake K, Yoshida K, Tsuzaki T, Fuji K, Sakamoto T, Okamoto N (2012) Progress of DNA marker-assisted breeding in maricultured. Finfish Fish Res Agen 35:31–37

    Google Scholar 

  • Overturf K, Lapatra S, Towner R, Campbell N, Narum S (2010) Relationships between growth and disease resistance in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 33:321–329

    Article  CAS  PubMed  Google Scholar 

  • Ozaki A, Sakamoto T, Khoo S, Nakamura K, Coimbra MR, Akutsu T, Okamoto N (2001) Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 265:23–31

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Ramilo ST, Fernández J, Toro MA, Bouza C, Hermida M, Fernández C, Pardo BG, Cabaleiro S, Martínez P (2013) Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus). Anim Genet 44:149–157

    Google Scholar 

  • Rodríguez-Ramilo ST, Toro MA, Bouza C, Hermida M, Pardo BG, Cabaleiro S, Martínez P, Fernández J (2011) QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genomics 12:541

    Article  PubMed Central  PubMed  Google Scholar 

  • Ross K, McCarthy U, Huntly PJ, Wood BP, Stuart D, Rough EI, Smail DA, Bruno DW (1994) An outbreak of viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus) in Scotland. Bull Eur Assoc Fish Pathol 14:213–214

    Google Scholar 

  • Ruan XH, Wang WJ, Kong J, Yu F, Huang XQ (2010) Genetic linkage mapping of turbot (Scophthalmus maximus L.) using microsatellite markers and its application in QTL analysis. Aquaculture 308:89–100

    Article  CAS  Google Scholar 

  • Rye M, Gjerde B, Gjdrem T (2010) Genetic improvement programs for aquaculture species in developed countries. In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production. Leipzig, Germany

  • Sánchez-Molano E, Cerna A, Toro MA, Bouza C, Hermida M, Pardo BG, Cabaleiro S, Fernández J, Martínez P (2011) Detection of growth-related QTL in turbot (Scophthalmus maximus). BMC Genomics 12:473

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlotfeldt HJ, Ahne W, Jørgensen PEV, Glende W (1991) Occurrence of viral haemorrhagic septicaemia in turbot (Scophthalmus maximus) — a natural outbreak. Bull Eur Assoc Fish Pathol 11:105–107

    Google Scholar 

  • Seaton G, Hernández J, Grunchec JA, White I, Allen J, De Koning DJ, Wei W, Berry D, Haley C, Knott S (2006) GridQTL: a grid portal for QTL mapping of compute intensive datasets. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production. Belo Horizonte, Brazil

  • Silva Correia J, Miranda Y, Leonard N, Ulevitch R (2007) SGT1 is essential for Nod1 activation. Proc Natl Acad Sci 104:6764–6769

    Article  PubMed Central  PubMed  Google Scholar 

  • Silverstein JT, Vallejo RL, Palti Y, Leeds TD, Rexroad CD III, Welch TJ, Wiens GD, Ducrocq V (2009) Rainbow trout resistance to bacterial cold-water disease is moderately heritable and is not adversely correlated with growth. J Anim Sci 87:860–867

    Article  CAS  PubMed  Google Scholar 

  • Slierendrecht WJ, Olesen NJ, Juul-Madsen HR, Lorenzen N, Henryon M, Berg P, Sondergaard J, Koch C (2001) Rainbow trout offspring with different resistance to viral haemorrhagic septicaemia. Fish Shellfish Immunol 11:155–167

    Article  CAS  PubMed  Google Scholar 

  • Snow M, Smail DA (1999) Experimental susceptibility of turbot Scophthalmus maximus to viral haemorrhagic septicaemia virus isolated from cultivated turbot. Dis Aquat Organ 38:163–168

    Article  CAS  PubMed  Google Scholar 

  • Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246:37–61

    Article  Google Scholar 

  • Verrier R, Dorson M, Mauger S, Torhy C, Ciobotaru C, Hervet C, Dechamp N, Genet C, Boudinot P, Quillet E (2013) Resistance to a rhabdovirus (VHSV) in rainbow trout: identification of a major QTL related to innate mechanisms. PLoS ONE 8:e55302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Ma A, Huang Z, Zhou Z (2010) Heritability and genetic correlation of survival in turbot (Scophthalmus maximus). Chin J Oceanol Limn 28:1200–1205

    Article  Google Scholar 

  • Wolf K (1988) Viral hemorrhagic septicemia. In: Fish viruses and fish viral diseases. Cornell University Press, New York, pp 217–249

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Spanish government project (Consolider Ingenio Aquagenomics: CSD200700002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Fernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(BMP 1524 kb)

ESM 2

(BMP 1448 kb)

ESM 3

(XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Ramilo, S.T., De La Herrán, R., Ruiz-Rejón, C. et al. Identification of Quantitative Trait Loci Associated with Resistance to Viral Haemorrhagic Septicaemia (VHS) in Turbot (Scophthalmus maximus): A Comparison Between Bacterium, Parasite and Virus Diseases. Mar Biotechnol 16, 265–276 (2014). https://doi.org/10.1007/s10126-013-9544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9544-x

Keywords

Navigation