Skip to main content
Log in

Conserved Mechanisms for Germ Cell-Specific Localization of nanos3 Transcripts in Teleost Species with Aquaculture Significance

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The importance of the aquaculture production is increasing with the declining global fish stocks, but early sexual maturation in several farmed species reduces muscle growth and quality, and escapees could have a negative impact on wild populations. A possible solution to these problems is the production of sterile fish by ablation of the embryonic primordial germ cells (PGCs), a technique developed in zebrafish. Cell-specific regulation of mRNA stability is crucial for proper specification of the germ cell lineage and commonly involves microRNA (miRNA)-mediated degradation of targeted mRNAs in somatic cells. This study reports on the functional roles of conserved motifs in the 3′ untranslated region (UTR) of the miRNA target gene nanos3 identified in Atlantic cod, Atlantic salmon, and zebrafish. The 3′UTR of cod nanos3 was sufficient for targeting the expression of green fluorescent protein (GFP) to the presumptive PGCs in injected embryos of the three phylogenetically distant species. 3′UTR elements of importance for PGC-specific expression were further examined by fusing truncated 3′UTR variants of cod nanos3 to GFP followed by injections in zebrafish embryos. The expression patterns of the GFP constructs in PGCs and somatic cells suggested that the proximal U-rich region is responsible for the PGC-specific stabilization of the endogenous nanos3 mRNA. Morpholino-mediated downregulation of the RNA-binding protein Dead end (DnD), a PGC-specific inhibitor of miRNA action, abolished the fluorescence of the PGCs in cod and zebrafish embryos, suggesting a conserved DnD-dependent mechanism for germ cell survival and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  • Bizuayehu TT, Babiak J, Norberg B, Fernandes JM, Johansen SD, Babiak I (2012) Sex-biased miRNA expression in Atlantic halibut (Hippoglossus hippoglossus) brain and gonads. Sex Dev 6:257–266

    Article  CAS  PubMed  Google Scholar 

  • Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, Kawakami K, Solnica-Krezel L, Heisenberg CP, Raz E (2006) Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 11(5):613–627

    Article  CAS  PubMed  Google Scholar 

  • Curtis D, Treiber DK, Tao F, Zamore PD, Williamson JR, Lehmann R (1997) A CCHC metal-binding domain in Nanos is essential for translational regulation. EMBO J 16:834–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D'Agostino I, Merritt C, Chen PL, Seydoux G, Subramaniam K (2006) Translational repression restricts expression of the C. elegans Nanos homolog NOS-2 to the embryonic germline. Dev Biol 292:244–252

    Article  PubMed  Google Scholar 

  • Drivenes Ø, Taranger GL, Edvardsen RB (2012) Gene expression profiling of Atlantic cod (Gadus morhua) embryogenesis using microarray. Mar Biotechnol (NY) 14:167–176

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fujimoto T, Nishimura T, Goto-Kazeto R, Kawakami Y, Yamaha E, Arai K (2010) Sexual dimorphism of gonadal structure and gene expression in germ cell-deficient loach, a teleost fish. Proc Natl Acad Sci U S A 107:17211–17216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gavis ER, Lehmann R (1994) Translational regulation of nanos by RNA localization. Nature 369:315–318

    Article  CAS  PubMed  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Sci 312:75–79

    Article  CAS  Google Scholar 

  • Hashimoto H, Kawaguchi S, Hara K, Nakamura K, Shimizu T, Tamaru Y, Sato M (2009) Purification, crystallization and initial X-ray diffraction study of the zinc-finger domain of zebrafish Nanos. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:959–961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Higaki S, Eto Y, Kawakami Y, Yamaha E, Kagawa N, Kuwayama M, Nagano M, Katagiri S, Takahashi Y (2010) Production of fertile zebrafish (Danio rerio) possessing germ cells (gametes) originated from primordial germ cells recovered from vitrified embryos. Reproduction 139:733–740

    Article  CAS  PubMed  Google Scholar 

  • Johansen SD, Karlsen BO, Furmanek T, Andreassen M, Jørgensen TE, Bizuayehu TT, Breines R, Emblem A, Kettunen P, Luukko K, Edvardsen RB, Nordeide JT, Coucheron DH, Moum T (2011) RNA deep sequencing of the Atlantic cod transcriptome. Comp Biochem Physiol D Genom Proteomics 6:18–22

    Article  Google Scholar 

  • Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van Duijse J, Ørom UA, Lund AH, Perrakis A, Raz E, Agami R (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286

    Article  CAS  PubMed  Google Scholar 

  • Knaut H, Steinbeisser H, Schwarz H, Nüsslein-Volhard C (2002) An evolutionary conserved region in the vasa 3'UTR targets RNA translation to the germ cells in the zebrafish. Curr Biol 12:454–466

    Article  CAS  PubMed  Google Scholar 

  • Köprunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15:2877–2885

    PubMed Central  PubMed  Google Scholar 

  • Lin F, Liu Q, Li M, Li Z, Hong N, Li J, Hong Y (2012) Transient and stable GFP expression in germ cells by the vasa regulatory sequences from the red seabream (Pagrus major). Int J Biol Sci 8:882–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mickoleit M, Banisch TU, Raz E (2011) Regulation of hub mRNA stability and translation by miR430 and the dead end protein promotes preferential expression in zebrafish primordial germ cells. Dev Dyn 240:695–703

    Article  CAS  PubMed  Google Scholar 

  • Mishima Y, Giraldez AJ, Takeda Y, Fujiwara T, Sakamoto H, Schier AF, Inoue K (2006) Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr Biol 16:2135–2142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagasawa K, Fernandes JM, Yoshizaki G, Miwa M, Babiak I (2013) Identification and migration of primordial germ cells in Atlantic salmon, Salmo salar: characterization of vasa, dead end, and lymphocyte antigen 75 genes. Mol Reprod Dev 80:118–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Okutsu T, Yano A, Nagasawa K, Shikina S, Kobayashi T, Takeuchi Y, Yoshizaki GJ (2006) Manipulation of fish germ cell: visualization, cryopreservation and transplantation. Reprod Dev 52:685–693

    Article  Google Scholar 

  • Presslauer C, Nagasawa K, Fernandes JM, Babiak I (2012) Expression of vasa and nanos3 during primordial germ cell formation and migration in Atlantic cod (Gadus morhua L.). Theriogenology 78:1262–1277

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Fujimoto T, Maegawa S, Inoue K, Tanaka M, Arai K, Yamaha E (2006) Visualization of primordial germ cells in vivo using GFP-nos1 3′UTR mRNA. Int J Dev Biol 50:691–699

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Goto-Kazeto R, Fujimoto T, Kawakami Y, Arai K, Yamaha E (2010) Inter-species transplantation and migration of primordial germ cells in cyprinid fish. Int J Dev Biol 54:1481–1486

    PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Slanchev K, Stebler J, de la Cueva-Méndez G, Raz E (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102:4074–4079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slanchev K, Stebler J, Goudarzi M, Cojocaru V, Weidinger G, Raz E (2009) Control of Dead end localization and activity—implications for the function of the protein in antagonizing miRNA function. Mech Dev 126:270–277

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Saba R, Sada A, Saga Y (2010) The Nanos3-3′UTR is required for germ cell specific NANOS3 expression in mouse embryos. PLoS One 5:e9300

    Article  PubMed Central  PubMed  Google Scholar 

  • Takeda Y, Mishima Y, Fujiwara T, Sakamoto H, Inoue K (2009) DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish. PLoS One 4:e7513

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen O, Norberg B, Andersson E (2010) Control of puberty in farmed fish. Gen Comp Endocrinol 165:483–515

    Article  CAS  PubMed  Google Scholar 

  • Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69

    Article  CAS  PubMed  Google Scholar 

  • Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, Thisse C, Thisse B, Raz E (2003) Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13:1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio), 3rd edn. University of Oregon Press, Eugene

    Google Scholar 

  • Wiszniak SE, Dredge BK, Jensen KB (2011) HuB (elavl2) mRNA is restricted to the germ cells by post-transcriptional mechanisms including stabilisation of the message by DAZL. PLoS One 6:e20773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolke U, Weidinger G, Köprunner M, Raz E (2002) Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish. Curr Biol 12:289–294

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki G, Tago Y, Takeuchi Y, Sawatari E, Kobayashi T, Takeuchi T (2005) Green fluorescent protein labeling of primordial germ cells using a nontransgenic method and its application for germ cell transplantation in Salmonidae. Biol Reprod 73:88–93

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki G, Okutsu T, Morita T, Terasawa M, Yazawa R, Takeuchi Y (2012) Biological characteristics of fish germ cells and their application to developmental biotechnology. Reprod Domest Anim 47(Suppl 4):187–192

    Article  PubMed  Google Scholar 

  • Youngren KK, Coveney D, Peng X, Bhattacharya C, Schmidt LS, Nickerson ML, Lamb BT, Deng JM, Behringer RR, Capel B, Rubin EM, Nadeau JH, Matin A (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435(7040):360–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anne Grethe Hestnes for excellent assistance with microscopy and Hanne Johnsen for preparing cod embryos for WISH analysis. Salmon and cod miR-430 sequences were kindly provided by Julian Hamfjord and Steinar Johansen. The study was financially supported by the Norwegian Research Council (project number 190371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øivind Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Škugor, A., Slanchev, K., Torgersen, J.S. et al. Conserved Mechanisms for Germ Cell-Specific Localization of nanos3 Transcripts in Teleost Species with Aquaculture Significance. Mar Biotechnol 16, 256–264 (2014). https://doi.org/10.1007/s10126-013-9543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9543-y

Keywords

Navigation