Skip to main content

Advertisement

Log in

Symbiotic Association Between Symbiodinium and the Gastropod Strombus gigas: Larval Acquisition of Symbionts

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The importance of the dinoflagellate Symbiodinium sp. was studied in the early life stages of the gastropod Strombus gigas. This dinoflagellate was not found in the eggs or the gelatinous mass surrounding the eggs of the mollusk; therefore, Symbiodinium is not inherited directly. To determine whether the planktonic veligers can acquire these algae from the environment, they were exposed to freshly isolated Symbiodinium from adult S. gigas (homologous). The optimal stage for Symbiodinium inoculation was found at 48 h post-hatching. Survival and growth rates of veligers and juveniles were higher when inoculated with freshly isolated Symbiodinium in conjunction with daily feeding of Isochrysis spp. Veligers inoculated with Symbiodinium freshly isolated from three host species elicited distinct responses: (1) veligers did not take up Symbiodinium isolated from the hydrozoan Millepora alcicornis suggesting that there is discrimination on contact prior to ingestion, (2) veligers did take up Symbiodinium isolated from the anemone Bartholomea annulata, but the algae did not persist in the host tissue suggesting that selection against this type took place after ingestion or that the algae did not divide in the host, and (3) veligers did take up Symbiodinium isolated from Pterogorgia anceps where it persisted and was associated with metamorphosis of the larvae. In contrast, the Symbiodinium freshly isolated from S. gigas were not associated with metamorphosis and required an inducer such as the red alga Laurencia poitei. These data present a significant advancement for the establishment of a new approach in the aquaculture of this important but declining Caribbean species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belda-Baillie CA, Sison M, Silvestre V, Villamor K, Monje V, Gomez ED, Baillie BK (1999) Evidence for changing symbiotic algae in juvenile tridacnids. J Exp Mar Biol Ecol 241:207–221

    Article  Google Scholar 

  • Belda-Baillie CA, Baillie BK, Maruyama T (2002) Specificity of a model cnidarian–dinoflagellate symbiosis. Biol Bull 202:74–85

    Article  CAS  PubMed  Google Scholar 

  • Berner T, Wishkovsky A, Dubinsky Z (1986a) Endozoic algae in shelled gastropods—a new symbiotic association in coral reefs? I. Photosynthetically active zooxanthellae in Strombus tricornis. Coral Reefs 5:103–106

    Article  Google Scholar 

  • Berner T, Wishkovsky A, Dubinsky Z (1986b) Endozoic algae in shelled gastropods—a new symbiotic association in coral reefs? II. Survey of distribution of endozoic algae in red sea snails. Coral Reefs 5:107–109

    Article  Google Scholar 

  • Boettcher AA, Targett NM (1996) Induction of metamorphosis in queen conch, Strombus gigas Linnaeus, larvae by cues associated with red algae from their nursery grounds. J Exp Mar Biol Ecol 196:29–52

    Article  Google Scholar 

  • Boettcher AA, Targett NM (1998) Role of chemical inducers in larval metamorphosis of queen conch, Strombus gigas Linnaeus: relationship to other marine invertebrate systems. Biol Bull 194:132–142

    Article  CAS  Google Scholar 

  • Coffroth MA, Santos SR, Goulet TL (2001) Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Mar Ecol Prog Ser 222:85–96

    Article  Google Scholar 

  • Coffroth MA, Lewis CF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16:R985–R987

    Article  CAS  PubMed  Google Scholar 

  • Colley NJ, Trench RK (1983) Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proc R Soc Lond 219:61–82

    Article  CAS  PubMed  Google Scholar 

  • D'Asaro CN (1965) Organogenesis, development, and metamorphosis in the queen conch, Strombus gigas, with notes on breeding habits. Bull Mar Sci 15:359–416

    Google Scholar 

  • Davis M (1994) Mariculture techniques for queen conch (Strombus gigas L.): Egg mass to juvenile stage. In: Appeldoorn RS, Rodriguez B (eds) Queen conch biology. Fisheries and Mariculture. Fundación Científica Los Roques, Caracas, pp 231–252

    Google Scholar 

  • Davis M (2000) The combined effects of temperature and salinity on growth, development, and survival of tropical gastropod veligers of Strombus gigas. J Shellfish Res 19:883–889

    Google Scholar 

  • Davis M, Hesse C (1983) Third world level conch mariculture in the Turks and Caicos Islands. Proc Gulf Carib Fish Inst 35:73–82

    Google Scholar 

  • Davis M, Heyman DW, Harvey W, Withstandley AC (1990) A comparison of two inducers, KCl and Laurencia extracts, and techniques for the commercial scale induction of metamorphosis in queen conch Strombus gigas Linnaeus, 1758 larvae. J Shellfish Res 9:67–73

    CAS  Google Scholar 

  • Davy S, Turner JR (2003) Early development and acquisition of zooxanthellae in the temperate symbiotic sea anemone Anthopleura ballii (Cocks). Biol Bull 205:66–72

    Article  PubMed  Google Scholar 

  • Farmer MA, Fitt WK, Trench RK (2001) Morphology of the symbiosis between Corculum cardissa (Mollusca: Bivalvia) and Symbiodinium corculorum (Dinophyceae). Biol Bull 200:336–343

    Article  CAS  PubMed  Google Scholar 

  • Fitt WK, Trench RK (1981) Spawning, development, and acquisition of zooxanthellae by Tridacna squamosa (Mollusca, Bivalvia). Biol Bull 161:213–235

    Article  Google Scholar 

  • Fitt WK, Fisher CR, Trench RK (1984) Larval biology of tridacnid clams. Aquaculture 39:181–195

    Article  Google Scholar 

  • Fitt WK, Fisher CR, Trench RK (1986) Contribution of the symbiotic dinoflagellate Symbiodinium microadriaticum to the nutrition, growth and survival of larval and juvenile tridacnid clams. Aquaculture 55:5–22

    Article  Google Scholar 

  • García-Ramos M, Banaszak AT (2007) The distribution of the dinoflagellate Symbiodinium in the conch Strombus gigas. Proc Gulf Caribbean Fish Inst 58:427–430

    Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrate. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 26–60

    Google Scholar 

  • Harii S, Yasuda N, Rodriguez-Lanetty M, Irie T, Hidaka M (2009) Onset of symbiosis and distribution patterns of symbiotic dinoflagellates in the larvae of scleractinian corals. Mar Biol 156:1203–1212

    Article  Google Scholar 

  • Harii S, Yamamoto M, Hoegh-Guldberg O (2010) The relative contribution of dinoflagellate photosynthesis and stored lipids to the survivorship of symbiotic larvae of the reef-building corals. Mar Biol 157:1215–1224

    Article  CAS  Google Scholar 

  • Hirose E, Iwai K, Maruyama T (2006) Establishment of the photosymbiosis in the early ontogeny of three giant clams. Mar Biol 148:551–558

    Article  Google Scholar 

  • Hirose M, Reimer JD, Hidaka M, Suda S (2008) Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa, Japan. Mar Biol 155:105–112

    Article  Google Scholar 

  • Kawaguti S (1950) Observations on the heart cockle, Corculum cardissa (L), and its associated zooxanthellae. Pac Sci 4:43–49

    Google Scholar 

  • Kempf SC (1984) Symbiosis between the zooxanthella Symbiodinium (= Gymnodinium) microadriaticum (Freudenthal) and four species of nudibranchs. Biol Bull 166:110–126

    Article  Google Scholar 

  • Koike K, Jimbo M, Sakai R, Kaeriyama M, Muramoto K, Ogata T, Maruyama T, Kamiya H (2004) Octocoral chemical signaling selects and controls dinoflagellate symbionts. Biol Bull 207:80–86

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • Lin KL, Wang JT, Fang LS (2000) Participation of glycoproteins on zooxanthellal cell walls in the establishment of a symbiotic relationship with the sea anemone, Aiptasia pulchella. Zool Stud 39:172–178

    CAS  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53

    Article  Google Scholar 

  • Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861

    Article  Google Scholar 

  • Markell DA, Trench RK, Iglesia-Prieto R (1992) Macromolecules associated with the cell walls of symbiotic dinoflagellates. Symbiosis 12:19–31

    CAS  Google Scholar 

  • Meints RH, Pardy RL (1980) Quantitative demonstration of cell surface involvement in a plant-animal symbiosis: lectin inhibition of reassociation. J Cell Sci 43:239–251

    CAS  PubMed  Google Scholar 

  • Nesa B, Baird AH, Harii S, Yakovleva I, Hidaka M (2012) Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool Stud 51:12–17

    CAS  Google Scholar 

  • Norton JH, Sheperd MA, Long HM, Fitt WK (1992) The zooxanthellal tubular system in the giant clam. Biol Bill 183:503–506

    Article  Google Scholar 

  • Padilla-Souza AC, Martínez-Vázquez D, Rivero-Fernández MA, Ramírez DeVerger RF, Cadena-Romero P (2007) Desarrollo de biotecnologías para el cultivo del caracol rosado Strombus gigas. Instituto Nacional de la Pesca-SAGARPA, Mexico, 86 pp

    Google Scholar 

  • Porto I, Granados C, Restrepo JC, Sanchez JA (2008) Macroalgal associated dinoflagellates belonging to the genus Symbiodinium in Caribbean Reefs. PLoS ONE 3:e2160

    Article  PubMed Central  PubMed  Google Scholar 

  • Randall JE (1964) Contributions to the biology of the queen conch Strombus gigas. Bull Mar Sci Gulf Carib 14(2):246-295

    Google Scholar 

  • Rodriguez-Lanetty M, Krupp DA, Weis VM (2004) Distinct ITS types of Symbiodinium in Clade C correlate with cnidarian/dinoflagellate specificity during onset of symbiosis. Mar Ecol Prog Ser 275:97–102

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Wood-Carlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Mar Biol 149:713–719

    Article  Google Scholar 

  • Sandt VJ, Stoner AW (1993) Ontogenetic shift in habitat by early juvenile queen conch, Strombus gigas: patterns and potential mechanisms. Fish Bull US 91:516–525

    Google Scholar 

  • Schoenberg DA, Trench RK (1980) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of Symbiodinium microadriaticum. Proc R Soc Lond B 207:445–460

    Article  Google Scholar 

  • Stoner AW (1997) The status of queen conch (Strombus gigas) research in the Caribbean. Mar Fish Rev 59:14–22

    Google Scholar 

  • Stoner AW, Sandt VJ (1991) Experimental analysis of habitat quality for juvenile queen conch in seagrass meadows. Fish Bull US 89:693–700

    Google Scholar 

  • Stoner AW, Waite JM (1991) Trophic biology of Strombus gigas in nursery habitats: diets and food sources in seagrass meadows. J Moll Studies 57:451–460

    Article  Google Scholar 

  • Thornhill DJ, Daniel MW, LaJeunesse TC, Schmidt GW, Fitt WK (2006) Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J Exp Mar Biol Ecol 338:50–56

    Article  Google Scholar 

  • Trench RK (1979) The cell biology of plant-animal symbiosis. Annu Rev Plant Physiol 30:485–531

    Article  CAS  Google Scholar 

  • Trench RK (1981) Cellular and molecular interactions in symbioses between dinoflagellates and marine invertebrates. Pure Appl Chem 53:819–835

    Article  CAS  Google Scholar 

  • Trench RK (1987) Dinoflagellates in non-parasitic symbioses, chapter 12. In: Taylor FJR (ed) The biology of dinoflagellates. Botanical Monographs, Blackwell, Oxford, UK, 21:530–570

  • Trench RK, Colley NJ, Fitt WK (1981) Recognition phenomena in symbioses between marine invertebrates and 'zooxanthellae'; uptake, sequestration and persistence. Ber Deutsch Bot Ges Bd 94:529–545

    CAS  Google Scholar 

  • Weis VM, Reynolds WS, deBoer MD, Krupp D (2001) Host symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs 20:301–308

    Article  Google Scholar 

  • Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. We are indebted to D. Martínez Vázquez and A.C. Padilla-Souza from the Centro Regional de Investigación Pesquera (CRIP) in Puerto Morelos of the Instituto Nacional de la Pesca (INAPESCA) as well as the Fishing Cooperatives: “Langosteros de Banco Chinchorro,” “Cozumel,” and “María Elena” for the assistance with field collections. The Centro Regional de Investigaciones Pesqueras of the Instituto Nacional de Pesca in Puerto Morelos provided the facilities for the experiments. We thank R. K. Trench and M. Schutter for the comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastazia T. Banaszak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Ramos, M., Banaszak, A.T. Symbiotic Association Between Symbiodinium and the Gastropod Strombus gigas: Larval Acquisition of Symbionts. Mar Biotechnol 16, 193–201 (2014). https://doi.org/10.1007/s10126-013-9536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9536-x

Keywords

Navigation