Skip to main content

Advertisement

Log in

Protection of Shrimp Penaeus monodon from WSSV Infection Using Antisense Constructs

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

White spot syndrome caused by white spot syndrome virus (WSSV) is one of the most threatening diseases of shrimp culture industry. Previous studies have successfully demonstrated the use of DNA- and RNA-based vaccines to protect WSSV infection in shrimp. In the present study, we have explored the protective efficacy of antisense constructs directed against WSSV proteins, VP24, and VP28, thymidylate synthase (TS), and ribonucleotide reductase-2 (RR2) under the control of endogenous shrimp histone-3 (H3) or penaedin (Pn) promoter. Several antisense constructs were generated by inserting VP24 (pH3–VP24, pPn–VP24), VP28 (pH3–VP28, pPn–VP28), TS (pH3–TS, pPn–TS), and RR2 (pH3–RR2) in antisense orientation. These constructs were tested for their protective potential in WSSV infected cell cultures, and their effect on reduction of the viral load was assessed. A robust reduction in WSSV copy number was observed upon transfection of antisense constructs in hemocyte cultures derived from Penaeus monodon and Scylla serrata. When tested in vivo, antisense constructs offered a strong protection in WSSV challenged P. monodon. Constructs expressing antisense VP24 and VP28 provided the best protection (up to 90 % survivability) with a corresponding decrease in the viral load. Our work demonstrates that shrimp treated with antisense constructs present an efficient control strategy for combating WSSV infection in shrimp aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe T, Takai K, Nakada S, Yokota T, Takaku H (1998) Specific inhibition of influenza virus RNA polymerase and nucleoprotein gene expression by circular dumbbell RNA/DNA Chimeric oligonucleotides containing antisense phosphodiester oligonucleotides. FEBS Lett 425(1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Ahlquist P (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296(5571):1270–1273. doi:10.1126/science.1069132

    Article  CAS  PubMed  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25(22):4692–4693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barnor JS, Miyano-Kurosaki N, Yamaguchi K, Sakamoto A, Ishikawa K, Inagaki Y, Yamamoto N, Osei-Kwasi M, Ofori-Adjei D, Takaku H (2004) Intracellular expression of antisense RNA transcripts complementary to the human immunodeficiency virus type-1 vif gene inhibits viral replication in infected T-lymphoblastoid cells. Biochem Biophys Res Commun 320(2):544–550. doi:10.1016/j.bbrc.2004.05.201

    Article  CAS  PubMed  Google Scholar 

  • Bonnichon V, Lightner DV, Bonami JR (2006) Viral interference between infectious hypodermal and hematopoietic necrosis virus and white spot syndrome virus in Litopenaeus vannamei. Dis Aquat Org 72(2):179–184. doi:10.3354/dao072179

    Article  PubMed  Google Scholar 

  • Chang CF, Su MS, Chen HY, Liao IC (2003) Dietary beta-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol 15(4):297–310

    Article  CAS  PubMed  Google Scholar 

  • Citarasu T, Sivaram V, Immanuel G, Rout N, Murugan V (2006) Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to hematological, biochemical, and immunological changes. Fish shellfish Immunol 21(4):372–384. doi:10.1016/j.fsi.2006.01.002

    Article  PubMed  Google Scholar 

  • Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101(5):543–553

    Article  CAS  PubMed  Google Scholar 

  • Escobedo-Bonilla CM, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert MB, Nauwynck HJ (2008) A review on the morphology, molecular characterization, morphogenesis, and pathogenesis of white spot syndrome virus. J of Fish Dis 31(1):1–18. doi:10.1111/j.1365-2761.2007.00877.x

    Article  CAS  Google Scholar 

  • Guan Y, Yu Z, Li C (2003) The effects of temperature on white spot syndrome infections in Marsupenaeus japonicus. J Invertebr Pathol 83(3):257–260

    Article  PubMed  Google Scholar 

  • Han L, Yun JS, Wagner TE (1991) Inhibition of Moloney murine leukemia virus-induced leukemia in transgenic mice expressing antisense RNA complementary to the retroviral packaging sequences. Proc Natl Acad Sci U S A 88(10):4313–4317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirono I, Fagutao FF, Kondo H, Aoki T (2011) Uncovering the mechanisms of shrimp innate immune response by RNA interference. Mar Biotechnol (NY) 13(4):622–628. doi:10.1007/s10126-010-9292-0

    Article  CAS  Google Scholar 

  • Huang C, Zhang X, Lin Q, Xu X, Hu Z, Hew CL (2002) Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466. Mol Cell Proteomics: MCP 1(3):223–231

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Kosuke Z, Nam YK, Kim SK, Kim KH (2007) Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish & shellfish immunology 23(1):242–246. doi:10.1016/j.fsi.2006.10.012

    Article  CAS  Google Scholar 

  • Krishnan P, Babu PG, Saravanan S, Rajendran KV, Chaudhari A (2009) DNA constructs expressing long-hairpin RNA (lhRNA) protect Penaeus monodon against white spot syndrome virus. Vaccine 27(29):3849–3855. doi:10.1016/j.vaccine.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  • Lei K, Li F, Zhang M, Yang H, Luo T, Xu X (2008) Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev Comp Immunol 32(7):808–813. doi:10.1016/j.dci.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Pan D, Zhang JH, Yang F (2004a) Identification of the thymidylate synthase within the genome of white spot syndrome virus. J Gen Virol 85(Pt 7):2035–2044. doi:10.1099/vir.0.80048-0

    Article  CAS  PubMed  Google Scholar 

  • Li YN, Yu M, Wu WQ, Gao JX, Wang H, Ji SP, Wang QH, Si CW (2004b) Inhibition of hepatitis C virus gene expression by antisense nucleotide in vitro. Zhonghua shi yan he lin chuang bing du xue za zhi = Zhonghua shiyan he linchuang bingduxue zazhi = Chin J of Exp and Clin Virol 18(4):341–343

    CAS  Google Scholar 

  • Lin ST, Chang YS, Wang HC, Tzeng HF, Chang ZF, Lin JY, Wang CH, Lo CF, Kou GH (2002) Ribonucleotide reductase of shrimp white spot syndrome virus (WSSV): expression and enzymatic activity in a baculovirus/insect cell system and WSSV-infected shrimp. Virology 304(2):282–290

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Asparuhova M, Brondani V, Ziekau I, Klimkait T, Schumperli D (2004) Inhibition of HIV-1 multiplication by antisense U7 snRNAs and siRNAs targeting cyclophilin A. Nucleic Acids Res 32(12):3752–3759. doi:10.1093/nar/gkh715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu X, Yu Q, Binder GK, Chen Z, Slepushkina T, Rossi J, Dropulic B (2004) Antisense-mediated inhibition of human immunodeficiency virus (HIV) replication by use of an HIV type 1-based vector results in severely attenuated mutants incapable of developing resistance. J Virol 78(13):7079–7088. doi:10.1128/JVI.78.13.7079-7088.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Y, Sun PS (2005) Viral resistance in shrimp that express an antisense Taura syndrome virus coat protein gene. Antivir Res 67(3):141–146. doi:10.1016/j.antiviral.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  • Melena J, Bayot B, Betancourt I, Amano Y, Panchana F, Alday V, Calderon J, Stern S, Roch P, Bonami JR (2006) Pre-exposure to infectious hypodermal and hematopoietic necrosis virus or to inactivated white spot syndrome virus (WSSV) confers protection against WSSV in Penaeus vannamei (Boone) postlarvae. J of Fish Dis 29(10):589–600. doi:10.1111/j.1365-2761.2006.00739.x

    Article  CAS  Google Scholar 

  • Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101(5):533–542

    Article  CAS  PubMed  Google Scholar 

  • Mu Y, Lan JF, Zhang XW, Wang XW, Zhao XF, Wang JX (2012) A vector that expresses VP28 of WSSV can protect red swamp crayfish from white spot disease. Dev Comp Immunol 36(2):442–449. doi:10.1016/j.dci.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  • Ongvarrasopone C, Chanasakulniyom M, Sritunyalucksana K, Panyim S (2008) Suppression of PmRab7 by dsRNA inhibits WSSV or YHV infection in shrimp. Mar Biotechnol (NY) 10(4):374–381. doi:10.1007/s10126-007-9073-6

    Article  CAS  Google Scholar 

  • Rajesh Kumar S, Ishaq Ahamed VP, Sarathi M, Nazeer Basha A, Sahul Hameed AS (2008) Immunological responses of Penaeus monodon to DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus (WSSV). Fish Shellfish Immunol 24(4):467–478. doi:10.1016/j.fsi.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  • Rameshthangam P, Ramasamy P (2007) Antiviral activity of bis(2-methylheptyl)phthalate isolated from Pongamia pinnata leaves against white spot syndrome virus of Penaeus monodon Fabricius. Virus Res 126(1–2):38–44. doi:10.1016/j.virusres.2007.01.014

    Article  CAS  PubMed  Google Scholar 

  • Robalino J, Bartlett T, Shepard E, Prior S, Jaramillo G, Scura E, Chapman RW, Gross PS, Browdy CL, Warr GW (2005) Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virol 79(21):13561–13571. doi:10.1128/JVI.79.21.13561-13571.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robalino J, Bartlett TC, Chapman RW, Gross PS, Browdy CL, Warr GW (2007) Double-stranded RNA and antiviral immunity in marine shrimp: inducible host mechanisms and evidence for the evolution of viral counter-responses. Dev Comp Immunol 31(6):539–547. doi:10.1016/j.dci.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  • Robalino J, Browdy CL, Prior S, Metz A, Parnell P, Gross P, Warr G (2004) Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol 78(19):10442–10448. doi:10.1128/JVI.78.19.10442-10448.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rout N, Kumar S, Jaganmohan S, Murugan V (2007) DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine 25(15):2778–2786. doi:10.1016/j.vaccine.2006.12.056

    Article  CAS  PubMed  Google Scholar 

  • Rowley AF, Powell A (2007) Invertebrate immune systems specific, quasi-specific, or nonspecific? J Immunol 179(11):7209–7214

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Paz A (2010) White spot syndrome virus: an overview on an emergent concern. Vet Res 41(6):43. doi:10.1051/vetres/2010015

    Article  PubMed Central  PubMed  Google Scholar 

  • Sánchez-Paz A, Sotelo-Mundo R, Muhlia-Almazán A (2012) The challenges of developing a treatment that fully protects shrimp against WSSV infection: a perspective. Advances in Zool Res 1:1–30

    Google Scholar 

  • Sarathi M, Simon MC, Ahmed VP, Kumar SR, Hameed AS (2008a) Silencing VP28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA. Mar Biotechnol (NY) 10(2):198–206. doi:10.1007/s10126-007-9052-y

    Article  CAS  Google Scholar 

  • Sarathi M, Simon MC, Venkatesan C, Hameed AS (2008b) Oral administration of bacterially expressed VP28dsRNA to protect Penaeus monodon from white spot syndrome virus. Mar Biotechnol (NY) 10(3):242–249. doi:10.1007/s10126-007-9057-6

    Article  CAS  Google Scholar 

  • Shekhar MS, Lu Y (2009) Application of nucleic acid-based therapeutics for viral infections in shrimp aquaculture. Mar Biotechnol (NY) 11(1):1–9. doi:10.1007/s10126-008-9155-0

    Article  CAS  Google Scholar 

  • Su J, Zhu Z, Wang Y, Xiong F, Zou J (2008) The cytomegalovirus promoter-driven short hairpin RNA constructs mediate effective RNA interference in zebrafish in vivo. Mar Biotechnol (NY) 10(3):262–269. doi:10.1007/s10126-007-9059-4

    Article  CAS  Google Scholar 

  • Syed MS, Kwang J (2011) Oral vaccination of baculovirus-expressed VP28 displays enhanced protection against white spot syndrome virus in Penaeus monodon. PLoS One 6(11):e26428. doi:10.1371/journal.pone.0026428

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Luo XY, Sanmuels V (2001) Gene silencing: double-stranded RNA mediated mRNA degradation and gene inactivation. Cell Res 11(3):181–186. doi:10.1038/sj.cr.7290084

    Article  CAS  PubMed  Google Scholar 

  • Tsai MF, Lo CF, van Hulten MC, Tzeng HF, Chou CM, Huang CJ, Wang CH, Lin JY, Vlak JM, Kou GH (2000) Transcriptional analysis of the ribonucleotide reductase genes of shrimp white spot syndrome virus. Virology 277(1):92–99. doi:10.1006/viro.2000.0596

    Article  CAS  PubMed  Google Scholar 

  • van Hulten MC, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, Sandbrink H, Lankhorst RK, Vlak JM (2001) The white spot syndrome virus DNA genome sequence. Virology 286(1):7–22. doi:10.1006/viro.2001.1002

    Article  PubMed  Google Scholar 

  • Venegas CA, Nonaka L, Mushiake K, Nishizawa T, Murog K (2000) Quasi-immune response of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Dis Aquat Org 42(2):83–89. doi:10.3354/dao042083

    Article  CAS  PubMed  Google Scholar 

  • Wenli C, Shields JD (2007) Characterization and primary culture of hemocytes from the blue crab Callinectus sapidus. Transactions of the Chinese crustacean society. In: Cai SL (ed) 5th World Chinese Symposium for Crustacean Aquaculture, vol 5. Ocean Press, Beijing, pp 25–35

    Google Scholar 

  • Westenberg M, Heinhuis B, Zuidema D, Vlak JM (2005) siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. Virus Res 114(1–2):133–139. doi:10.1016/j.virusres.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  • Witteveldt J, Vlak JM, van Hulten MC (2004) Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol 16(5):571–579. doi:10.1016/j.fsi.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  • Wu JL, Nishioka T, Mori K, Nishizawa T, Muroga K (2002) A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish Shellfish Immunol 13(5):391–403

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yang F (2006) White spot syndrome virus VP24 interacts with VP28 and is involved in virus infection. J Gen Virol 87(Pt 7):1903–1908. doi:10.1099/vir.0.81570-0

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Han F, Zhang X (2007) Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antivir Res 73(2):126–131. doi:10.1016/j.antiviral.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  • Yang F, He J, Lin X, Li Q, Pan D, Zhang X, Xu X (2001) Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 75(23):11811–11820. doi:10.1128/JVI.75.23.11811-11820.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang JY, Chang CI, Liu KF, Hseu JR, Chen LH, Tsai JM (2012) Viral resistance and immune responses of the shrimp Litopenaeus vannamei vaccinated by two WSSV structural proteins. Immunol Lett 148(1):41–48. doi:10.1016/j.imlet.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  • Yi G, Wang Z, Qi Y, Yao L, Qian J, Hu L (2004) Vp28 of shrimp white spot syndrome virus is involved in the attachment and penetration into shrimp cells. J Biochem Mol Biol 37(6):726–734

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Huang C, Xu X, Hew CL (2002) Identification and localization of a prawn white spot syndrome virus gene that encodes an envelope protein. J Gen Virol 83(Pt 5):1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Zhi B, Tang W, Zhang X (2011) Enhancement of shrimp antiviral immune response through caspase-dependent apoptosis by small molecules. Mar Biotechnol (NY) 13(3):575–583. doi:10.1007/s10126-010-9328-5

    Article  CAS  Google Scholar 

  • Zhu F, Zhang X (2012) Protection of shrimp against white spot syndrome virus (WSSV) with beta-1,3-D-glucan-encapsulated vp28-siRNA particles. Mar Biotechnol (NY) 14(1):63–68. doi:10.1007/s10126-011-9387-2

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to the Department of Fisheries, Government of Andhra Pradesh for participating and providing facilities and Mr. N.V. Ramakanth for his help in construction of vectors. Financial assistance of NAIP (ICAR) component-4 grant no. C4-30019 is greatly acknowledged. The authors also thank Dr. W.S. Lakra, Director, CIFE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Mishra.

Additional information

S. A., S. S., D.A., and M.K.M contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 175 kb)

ESM 2

(JPEG 202 kb)

ESM 3

(JPEG 100 kb)

ESM 4

(JPEG 103 kb)

ESM 5

(JPEG 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahanger, S., Sandaka, S., Ananad, D. et al. Protection of Shrimp Penaeus monodon from WSSV Infection Using Antisense Constructs. Mar Biotechnol 16, 63–73 (2014). https://doi.org/10.1007/s10126-013-9529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9529-9

Keywords

Navigation