Skip to main content
Log in

Transcriptomic Response of Skeletal Muscle to Lipopolysaccharide in the Gilthead Seabream (Sparus aurata)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The physiological consequences of the activation of the immune system in fish are not well understood. In particular, skeletal muscle, due to its essential role in locomotion and whole-animal energy homeostasis, is a potentially important target of inflammation. In this study, we have evaluated the in vivo effects of lipopolysaccharide (LPS) on the white and red skeletal muscle transcriptome of the gilthead seabream (Sparus aurata) by microarray analysis at 24 and 72 h after injection. In white muscle, the transcriptomic response was characterized by an up-regulation of genes involved in carbohydrate catabolism and protein synthesis at 24 h and a complete reversal of this pattern at 72 h. In red muscle, an up-regulation of genes involved in carbohydrate catabolism and protein synthesis was observed only at 72 h after LPS administration. Interestingly, both white and red muscles showed a similar consistent down-regulation of immune genes at 72 h post-injection. However, genes involved in muscle contraction showed a general up-regulation in response to LPS in both types of muscle. In summary, LPS administration causes muscle type-specific responses regarding the expression of genes involved in carbohydrate and protein metabolism and a common decreased expression of immune genes in skeletal muscle, concomitant with increased expression of genes for contractile elements. Our results evidence a robust and tissue-specific transcriptomic response of the skeletal muscle to an acute inflammatory challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acerete L, Balasch JC, Castellana B, Redruello B, Roher N, Canario AV, Planas JV, MacKenzie S, Tort L (2007) Cloning of the glucocorticoid receptor (GR) in gilthead seabream (Sparus aurata). Differential expression of GR and immune genes in gilthead seabream after and immune challenge. Comp Biochem Physiol B 148:32–43

    Article  PubMed  CAS  Google Scholar 

  • Altringham JD, Ellerby DJ (1999) Fish swimming: patterns in muscle function. J Exp Biol 202:3397–3403

    PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    Article  PubMed  CAS  Google Scholar 

  • Berczi I, Bertok L, Bereznai T (1966) Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species. Can J Microbiol 12:1070–1071

    Article  PubMed  CAS  Google Scholar 

  • Blasco J, Fernàndez-Borràs J, Marimon I, Requena A (1996) Plasma glucose kinetics and tissue uptake in brown trout in vivo: effect of an intravascular glucose load. J Comp Physiol B 165:534–541

    Article  CAS  Google Scholar 

  • Bone Q (1978) Locomotor muscle. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic, New York, pp 361–424

    Google Scholar 

  • Boshra H, Li J, Sunyer JO (2006) Recent advances on the complement system of teleost fish. Fish Shellfish Immunol 20:239–262

    Article  PubMed  CAS  Google Scholar 

  • Campinho MA, Sweeney GE, Power DE (2006) Regulation of troponin T expression during muscle development in sea bream Sparus auratus Linnaeus: the potential role of thyroid hormones. J Exp Biol 209:4751–4767

    Article  PubMed  CAS  Google Scholar 

  • Castilho PC, Buckley BA, Somero G, Block BA (2009) Heterologous hybridization to a complementary DNA microarray reveals the effect of thermal acclimation in the endothermic bluefin tuna (Thunnus orientalis). Mol Ecol 18:2092–2102

    Article  PubMed  CAS  Google Scholar 

  • Chen SE, Jin B, Li YP (2007) TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 292:1660–1671

    Article  Google Scholar 

  • Ciaraldi TP, Carter L, Mudaliar S, Kern PA, Henry RR (1998) Effects of tumor necrosis factor-alpha on glucose metabolism in cultured human muscle cells from nondiabetic and type 2 diabetic subjects. Endocrinology 139:4793–4800

    Article  PubMed  CAS  Google Scholar 

  • Crespo D, Bonnet E, Roher N, MacKenzie SA, Krasnov A, Goetz FW, Bobe J, Planas JV (2010) Cellular and molecular evidence for a role of tumor necrosis factor alpha in the ovulatory mechanism of trout. Reprod Biol Endocrinol 8:34

    Article  PubMed  Google Scholar 

  • Cuesta A, Dios S, Figueras A, Novoa B, Esteban MA, Meseguer J, Tafalla C (2010) Identification of six novel CC chemokines in gilthead seabream (Sparus aurata) implicated in the antiviral immune response. Mol Immunol 47:1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Darias MJ, Zambonino-Infante JL, Hugot K, Cahu CL, Mazurais D (2008) Gene expression pattern during the larval development of the European seabass (Dicentrarchus labrax) by microarray analysis. Mar Biotechnol 10:416–428

    Article  PubMed  CAS  Google Scholar 

  • de Alvaro C, Teruel T, Hernandez R, Lorenzo M (2004) Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner. J Biol Chem 279:17070–17078

    Article  PubMed  Google Scholar 

  • Degens H (2010) The role of systemic inflammation in age-related muscle weakness and wasting. Sand J Med Sci Sports 20:28–38

    Article  CAS  Google Scholar 

  • del Aguila LF, Claffey KP, Kirwan JP (1999) TNF-alpha impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am J Physiol Endocrinol Metab 276:E849–E855

    Google Scholar 

  • Djordjevic B, Skugor S, Jorgensen SM, Overland M, Mydland LT, Krasnov A (2009) Modulation of splenic immune responses to bacterial lipopolysaccharide in rainbow trout (Oncorhynchus mykiss) fed lentinan, a beta-glucan from mushroom Lentinula edodes. Fish Shellfish Immunol 26:201–209

    Article  PubMed  CAS  Google Scholar 

  • Frost RA, Lang CH (2004) Alteration of somatotropic function by proinflammatory cytokines. J Anim Sci 82:100–109

    Google Scholar 

  • Frost RA, Lang CH (2008) Regulation of muscle growth by pathogen-associated molecules. J Anim Sci 86:84–93

    Article  Google Scholar 

  • Goetz FW, Iliev DB, McCauley LA, Liarte CQ, Tort LB, Planas JV, Mackenzie S (2004) Analysis of genes isolated from lipopolysaccharide-stimulated rainbow trout (Oncorhynchus mykiss) macrophages. Mol Immunol 41:1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Healy TM, Tymchuk WE, Osborne EJ, Schulte PM (2010) Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches. Physiol Genom 41:171–184

    Article  CAS  Google Scholar 

  • Iliev DB, Roach JC, Mackenzie S, Planas JV, Goetz FW (2005) Endotoxin recognition: in fish or not in fish? FEBS Lett 579:6519–6528

    Article  PubMed  CAS  Google Scholar 

  • Johansen KA, Sealey WM, Overturf K (2006) The effects of chronic immune stimulation on muscle growth in rainbow trout. Comp Biochem Physiol 144:520–531

    Article  Google Scholar 

  • Jorgensen SM, Afanasyev S, Krasnov A (2008) Gene expression analyses in Atlantic salmon challenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality. BMC Genom 9:179

    Article  Google Scholar 

  • Koskinen H, Pehkonen P, Vehnioinen E, Krasnov A, Rexroad C, Afanasyev S, Molsa H, Oikari A (2004) Response of rainbow trout transcriptome to model chemical contaminants. Biochem Biophys Res Commun 320:745–753

    Article  PubMed  CAS  Google Scholar 

  • Kraal G, van der Laan LJ, Elomaa O, Tryggvason K (2000) The macrophage receptor MARCO. Microb Infect 2:313–316

    Article  CAS  Google Scholar 

  • Krasnov A, Koskinen H, Pehkonen P, Rexroad CE, Afanasyev S, Molsa H (2005) Gene expression in the brain and kidney of rainbow trout in response to handling stress. BMC Genom 6:3

    Article  Google Scholar 

  • Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Baile J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  PubMed  CAS  Google Scholar 

  • Li YP (2003) TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 285:370–376

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2-[delta][delta]CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie S, Liarte C, Iliev D, Planas JV, Tort L, Goetz FW (2004) Characterization of a highly inducible novel CC chemokine from differentiated rainbow trout (Oncorhynchus mykiss) macrophages. Immunogenetics 56:611–615

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie S, Iliev D, Liarte C, Koskinen H, Planas JV, Goetz FW, Molsa H, Krasnov A, Tort L (2006a) Transcriptional analysis of LPS-stimulated activation of trout (Oncorhynchus mykiss) monocyte/macrophage cells in primary culture treated with cortisol. Mol Immunol 43:1340–1348

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie S, Montserrat N, Mas M, Acerete L, Tort L, Krasnov A, Goetz FW, Planas JV (2006b) Bacterial lipopolysaccharide induces apoptosis in the trout ovary. Reprod Biol Endocrinol 4:46

    Article  PubMed  Google Scholar 

  • MacKenzie S, Balasch JC, Novoa B, Ribas L, Roher N, Krasnov A, Figueras A (2008) Comparative analysis of the acute response of the trout, O. mykiss, head kidney to in vivo challenge with virulent and attenuated infectious hematopoietic necrosis virus and LPS-induced inflammation. BMC Genom 9:141

    Article  Google Scholar 

  • Morris EJ, Michaud WA, Ji JY, Moon NS, Rocco JW, Dyson NJ (2006) Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2(11):e196

    Article  PubMed  Google Scholar 

  • Park SH, Lee JH, Lee GB, Byun HJ, Kim BR, Park CY, Kim HB, Rho SB (2012) PDCD6 additively cooperates with anti-cancer drugs through activation of NF-kB pathways. Cell Signal 24:726–733

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK (2011) Muscles and their myokines. J Exp Biol 214:337–346

    Article  PubMed  CAS  Google Scholar 

  • Rectenwald JE, Moldawer LL (2002) Skeletal muscle and cytokines in sepsis and severe injury. In: Preedy VR, Peters TJ (eds) Skeletal muscle: pathology, diagnosis and management of disease. Cambridge University Press, Cambridge, pp 301–310

    Google Scholar 

  • Renn SCP, Aubin-Horth N, Hofmann HA (2004) Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genom 5:42

    Article  Google Scholar 

  • Ribas L, Planas JV, Barton B, Monetti C, Bernardini G, Saroglia M, Tort L, MacKenzie S (2004) A differentially expressed enolase gene isolated from the gilthead seabream (Sparus aurata) under high-density conditions is up-regulated in brain after in vivo lipopolysaccharide challenge. Aquaculture 241:195–206

    Article  CAS  Google Scholar 

  • Roher N, Krasnov A, MacKenzie S, Planas JV (2007) Transcriptomic and proteomic analyses of skeletal muscle in LPS stimulated rainbow trout (Oncorhynchus mykiss). Aquaculture 272:305–306

    Article  Google Scholar 

  • Salem M, Kenney PB, Rexroad CE 3rd, Yao J (2006) Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genom 28:33–45

    Article  CAS  Google Scholar 

  • Schiotz BL, Jorgensen SM, Rexroad C, Gjoen T, Krasnov A (2008) Transcriptomic analysis of responses to infectious salmon anemia virus infection in macrophage-like cells. Virus Research 136:65–74

    Article  PubMed  Google Scholar 

  • Skugor S, Glover KA, Nilsen F, Krasnov A (2008) Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis). BMC Genom 9:498

    Article  Google Scholar 

  • Swain P, Nayak SK, Nanda PK, Dash S (2008) Biological effects of bacterial lipopolysaccharide (endotoxin) in fish: a review. Fish Shellfish Immunol 25:191–201

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, Reed JC (1995) Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284

    Article  PubMed  CAS  Google Scholar 

  • Van den Thillart G (1986) Energy metabolism of swimming trout (Salmo gairdneri). Oxidation rates of palmitate, glucose, lactate, alanine, leucine and glutamate. J Comp Physiol 156:511–520

    Google Scholar 

  • Vraskou Y, Roher N, Diaz M, Antonescu CN, Mackenzie SA, Planas JV (2011) Direct involvement of tumor necrosis factor alpha in the regulation of glucose uptake in rainbow trout muscle cells. Am J Physiol Regul Integr Comp Physiol 300:716–723

    Article  Google Scholar 

  • Walensky LD, Gavathiotis E (2011) BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem Sci 36:642–652

    Article  PubMed  CAS  Google Scholar 

  • Wiendl H, Hohlfeld R, Kieseir BC (2005) Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol 26:373–380

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wei W, Wu H, Xu H, Chang K, Zhang Y (2010) Gene cloning and characterization of ferritin H and M subunits from large yellow croaker (Pseudociaena crocea). Fish Shellfish Immunol 28:735–742

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Xiao ZZ, Sun L (2011) Suppressor of cytokine signaling 3 inhibits head kidney macrophage activation and cytokine expression in Scophthalmus maximus. Dev Comp Immunol 35:174–181

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Carrington A, Collet B, Dijkstra JM, Yoshiura Y, Bols N, Secombes C (2005) Identification and bioactivities of IFN-gamma in rainbow trout Oncorhynchus mykiss: the first Th1-type cytokine characterized functionally in fish. J Immunol 175:2484–2494

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research has been funded by grants CSD2007-0002 and HG2005-0008 from the Spanish Ministry of Science and Innovation to JVP and by GSRT of the Ministry of Development under the Research and Technology Cooperation scheme between Greece and Spain 2005-2007 to EA. We would also like to thank the Turku Centre of Biotechnology (Finland) for the preparation of microarrays and Dr. Aleksei Krasnov (Nofima Marin) for his assistance with microarray analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep V. Planas.

Additional information

Elisavet Kaitetzidou and Diego Crespo contributed equally to this study.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

Complete list of differentially expressed genes in white muscle at 24 h after lipopolysaccharide administration. Only significantly up- and down-regulated genes (p < 0.01, Student’s t-test, 12 spot replicates per gene) are shown (XLSX 22 kb)

ESM 2

Complete list of differentially expressed genes in white muscle at 72 h after lipopolysaccharide administration. Only significantly up- and down-regulated genes (p < 0.01, Student’s t-test, 12 spot replicates per gene) are shown (XLSX 26 kb)

ESM 3

Complete list of differentially expressed genes in red muscle at 24 h after lipopolysaccharide administration. Only significantly up- and down-regulated genes (p < 0.01, Student’s t-test, 12 spot replicates per gene) are shown (XLSX 13 kb)

ESM 4

Complete list of differentially expressed genes in red muscle at 72 h after lipopolysaccharide administration. Only significantly up- and down-regulated genes (p < 0.01, Student’s t-test, 12 spot replicates per gene) are shown (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaitetzidou, E., Crespo, D., Vraskou, Y. et al. Transcriptomic Response of Skeletal Muscle to Lipopolysaccharide in the Gilthead Seabream (Sparus aurata). Mar Biotechnol 14, 605–619 (2012). https://doi.org/10.1007/s10126-012-9469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9469-9

Keywords

Navigation