Skip to main content
Log in

Genetic Positioning of Centromeres through Half-Tetrad Analysis in Gynogenetic Diploid Families of the Zhikong Scallop (Chlamys farreri)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Centromere mapping is a powerful tool for improving linkage maps, investigating crossover events, and understanding chiasma interference during meiosis. Ninety microsatellite markers selected across all linkage groups (LGs) from a previous Chlamys farreri genetic map were studied in three artificially induced meiogynogenetic families for centromere mapping by half-tetrad analysis. Inheritance analyses showed that all 90 microsatellite loci conformed to Mendelian inheritance in the control crosses, while 4.4 % of the microsatellite loci showed segregation departures from an expected 1:1 ratio of two homozygote classes in meiogynogenetic progeny. The second division segregation frequency (y) of the microsatellites ranged from 0.033 to 0.778 with a mean of 0.332, confirming the occurrence of partial chiasma interference in this species. Heterogeneity of y is observed in one of 42 cases in which markers were typed in more than one family, suggesting variation in gene–centromere recombination among families. Centromere location was mostly in accordance with the C. farreri karyotype, but differences in marker order between linkage and centromere maps occurred. Overall, this study makes the genetic linkage map a more complete and informative tool for genomic studies and it will also facilitate future research of the structure and function of the scallop centromeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allendorf FW, Leary RF (1984) Heterozygosity in gynogenetic diploids and triploids estimated by gene–centromere recombination rates. Aquaculture 43:413–420

    Article  Google Scholar 

  • Allendorf FW, Seeb JE, Knudsen KL, Thorgaard GH, Leary RF (1986) Gene–centromere mapping of 25 loci in rainbow trout. J Hered 77:307–312

    Google Scholar 

  • Bao Z, Hu J, Hu, X, Wang S, Huang X, Zhang L, Lu W (2011) Recent progress on scallop genetics and breeding in China. The 18th International Pectinid Workshop Program & Abstracts. Qingdao, China. 37 pp

  • Bastiaanssen HJM, Ramanna MS, Sawor Z, Mincione A, Steen A, Jacobsen E (1996) Pollen markers for gene–centromere mapping in diploid potato. Theor Appl Genet 93:1040–1047

    Article  CAS  Google Scholar 

  • Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR (1993) Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am J Hum Genet 52:922–927

    PubMed  CAS  Google Scholar 

  • Cuenca J, Froelicher Y, Aleza P, Juárez J, Navarro L, Ollitrault P (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Heredity 107:462–470

    Article  PubMed  CAS  Google Scholar 

  • Danzmann RG, Gharbi K (2001) Gene mapping in fishes: a means to an end. Genetica 111:3–23

    Article  PubMed  CAS  Google Scholar 

  • Department of Fisheries (DOF) (2010) China fisheries statistic yearbook 2009 (in Chinese). China Agriculture Press, Beijing

    Google Scholar 

  • Foley BR, Rose CG, Rundle DE, Leong W, Moy GW, Burton RS, Edmands S (2011) A gene-based SNP resource and linkage map for the copepod Tigriopus californicus. BMC Genomics 12:568

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Allen SK Jr (1996) Complete interference and nonrandom distribution of meiotic crossover in a mollusc, Mulinia lateralis (Say). Biol Bull 191:145–148

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Wang Y, Wang L, Lee JH, Kocher TD, Kole C (2008) Oysters. In: Genome mapping and genomics in fishes and aquatic animals, vol 2. Springer, Berlin, p 165

    Chapter  Google Scholar 

  • Guo X, Li Q, Wang QZ, Kong LF (2012) Genetic mapping and QTL analysis of growth-related traits in the Pacific oyster. Mar Biotechnol 14:218–226

    Article  PubMed  CAS  Google Scholar 

  • Guyomard R, Mauger S, Tabet-Canale K, Martineau S, Genet C, Krieg F, Quillet E (2006) A type I and type II microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) with presumptive coverage of all chromosome arms. BMC Genomics 7:302

    Article  PubMed  Google Scholar 

  • Hedgecock D, Li G, Hubert S, Bucklin K, Ribes V (2004) Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster Crassostrea gigas. J Shellfish Res 23:379–385

    Google Scholar 

  • Hubert S, Hedgecock D (2004) Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics 168:351–362

    Article  PubMed  CAS  Google Scholar 

  • Hubert S, Cognard E, Hedgecock D (2009) Centromere mapping in triploid families of the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture 288:172–183

    Article  CAS  Google Scholar 

  • Hwang SD, Fuji K, Takano T, Sakamoto T, Kondo H, Hirono I, Aoki T (2011) Linkage mapping of toll-like receptors (TLRs) in Japanese flounder, Paralichthys olivaceus. Mar Biotechnol 13:1086–1091

    Article  PubMed  CAS  Google Scholar 

  • Johnson SL, Gates MA, Johnson M, Talbot WS, Horne S, Baik K, Rude S, Wong JR, Postlethwait JH (1996) Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142:1277–1288

    PubMed  CAS  Google Scholar 

  • Komaru A, Wada K (1985) Karyotypes of four species in the Pectinide (Bivalvia: Pteriomorphia). Venus Jap J Malac 44:249–259

    Google Scholar 

  • Launey S, Hedgecock D (2001) High genetic load in the Pacific oyster Crassostrea gigas. Genetics 159:255–265

    PubMed  CAS  Google Scholar 

  • Lee BY, Coutanceau JP, Ozouf-Costaz C, D’Cotta H, Baroiller JF, Kocher TD (2011) Genetic and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus). Mar Biotechnol 13:557–562

    Article  PubMed  CAS  Google Scholar 

  • Li L, Guo X (2004) AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigas Thunberg. Mar Biotechnol 6:26–36

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Kijima A (2005) Segregation of microsatellite alleles in gynogenetic diploid Pacific abalone (Haliotis discus hannai). Mar Biotechnol 7:669–676

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Kijima A (2006) Microsatellite analysis of gynogenetic families in the Pacific oyster, Crassostrea gigas. J Exp Mar Biol Ecol 331:1–8

    Article  CAS  Google Scholar 

  • Li Q, Park C, Kijima A (2002) Isolation and characterization of microsatellite loci in the Pacific abalone, Haliotis discus hannai. J Shellfish Res 21:811–815

    Google Scholar 

  • Li Q, Park C, Kijima A (2003) Allelic transmission of microsatellites and application to kinship analysis in newly hatched Pacific abalone larvae. Fish Sci 69:883–889

    Article  CAS  Google Scholar 

  • Li L, Xiang J, Liu X, Zhang Y, Dong B, Zhang X (2005) Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture 245:63–73

    Article  CAS  Google Scholar 

  • Li Y, Cai M, Wang Z, Guo W, Liu X, Wang X, Ning Y (2008) Microsatellite–centromere mapping in large yellow croaker (Pseudosciaena crocea) using gynogenetic diploid families. Mar Biotechnol 10:83–90

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Nie HT, Kong LF (2009) Microsatellite–centromere mapping in Zhikong scallop (Chlamys farreri) through half-tetrad analysis in D-shaped larvae of gynogenetic diploid families. Aquaculture 293:29–34

    Article  CAS  Google Scholar 

  • Li J, Boroevich KA, Koop BF, Davidson WS (2011) Comparative genomics identifies candidate genes for infectious salmon anemia (ISA) resistance in Atlantic salmon (Salmo salar). Mar Biotechnol 13:232–241

    Article  PubMed  CAS  Google Scholar 

  • Li H, Liu X, Zhang G (2012) Development and linkage analysis of 104 new microsatellite markers for bay scallop (Argopecten irradians). Mar Biotechnol 14:1–9

    Article  PubMed  Google Scholar 

  • Lindner KR, Seeb JE, Habicht C, Knudsen KL, Kretschmer E, Reedy DJ, Spruell P, Allendorf FW (2000) Gene–centromere mapping of 312 loci in pink salmon by half tetrad analysis. Genome 43:538–549

    Article  PubMed  CAS  Google Scholar 

  • Liu BH (1998) Statistical genomics: linkage, mapping, and QTL analysis. CRC, Boca Raton

    Google Scholar 

  • Liu Q, Goudie CA, Simco BA, Davis KB, Morizot DC (1992) Gene–centromere mapping of six enzyme loci in gynogenetic channel catfish. J Hered 83:245–248

    Google Scholar 

  • Liu X, Liu X, Guo X, Gao Q, Zhao H, Zhang G (2006) A preliminary genetic linkage map of the Pacific abalone Haliotis discus hannai Ino. Mar Biotechnol 8:386–397

    Article  PubMed  Google Scholar 

  • Liu S, Rexroad CE 3rd, Couch CR, Cordes JF, Reece KS, Sullivan CVA (2012) Microsatellite linkage map of striped bass (Morone saxatilis) reveals conserved synteny with the three-spined stickleback (Gasterosteus aculeatus). Mar Biotechnol 14:237–244

    Article  PubMed  CAS  Google Scholar 

  • Martínez P, Hermida M, Pardo BG, Fernández C, Castro J, Cal RM, Álvarez-Dios JA, Gómez-Tato A, Bouza C (2008) Centromere-linkage in the turbot (Scophthalmus maximus) through half-tetrad analysis in diploid meiogynogenetics. Aquaculture 280:81–88

    Article  Google Scholar 

  • Mather K (1935) Reductional and equational separation of the chromosomes in bivalents and multivalents. J Genet 30:53–78

    Article  Google Scholar 

  • Morishima K, Nakayama I, Arai K (2001) Microsatellite–centromere mapping in the loach, Misgurnus anguillicaudatus. Genetica 111:59–69

    Article  PubMed  CAS  Google Scholar 

  • Morishima K, Nakayama I, Arai K (2008) Genetic linkage map of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae). Genetica 132:227–241

    Article  PubMed  CAS  Google Scholar 

  • Nie HT, Li Q, Kong LF (2011) Microsatellite–centromere mapping in sea cucumber (Apostichopus japonicus) using gynogenetic diploid families. Aquaculture 319:67–71

    Article  CAS  Google Scholar 

  • Nie HT, Li Q, Kong LF (2012) Centromere mapping in the Pacific abalone (Haliotis discus hannai) through half-tetrad analysis in gynogenetic diploid families. Anim Genet. doi:10.1111/j.1365-2052.2011.02254.x

  • Okagaki RJ, Jacobs MS, Stec AO, Kynast RG, Buescher E, Rines HW, Vales MI, Riera-Lizarazu O, Schneerman M, Doyle G, Friedman KL, Staub RW, Weber DF, Kamps TL, Amarillo IFE, Chase CD, Bass HW, Phillips RL (2008) Maize centromere mapping: a comparison of physical and genetic strategies. J Hered 99:85–93

    Article  PubMed  CAS  Google Scholar 

  • Ott J, Linder D, Mccaw BK, Lovrien EW, Hecht F (1976) Estimating distances from the centromere by means of benign ovarian teratomas in man. Ann Hum Genet 40:191–196

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Li Q, Yu R, Wang R (2004) Induction of gynogenetic diploids and cytological studies in the Zhikong scallop, Chlamys farreri. Aquat Living Resour 17:201–206

    Article  Google Scholar 

  • Park TH, Kim JB, Hutten RCB, van Eck HJ, Jacobsen E, Visser RGE (2007) Genetic positioning of centromeres using half-tetrad analysis in a 4x–2x cross population of potato. Genetics 176:85–94

    Article  PubMed  CAS  Google Scholar 

  • Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–252

    Article  PubMed  CAS  Google Scholar 

  • Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC (1995) The centromere: hub of chromosomal activities. Science 270:1591–1594

    Article  PubMed  CAS  Google Scholar 

  • Purdom CE (1983) Genetic engineering by the manipulation of chromosomes. Aquaculture 33:287–300

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson MM, Holm L-E, Guyomard R, Hoyheim B (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155:1331–1345

    PubMed  CAS  Google Scholar 

  • Sekino M, Hara M (2007) Linkage maps for the Pacific abalone (genus Haliotis) based on microsatellite DNA markers. Genetics 175:945–958

    Article  PubMed  CAS  Google Scholar 

  • Tavoletti S, Bingham ET, Yandell BS, Veronesi F, Osborn TC (1996) Half tetrad analysis in alfalfa using multiple restriction fragment length polymorphism markers. Proc Natl Acad Sci 93:10918–10922

    Article  PubMed  CAS  Google Scholar 

  • Thorgaard GH, Allendorf FW, Knudsen KL (1983) Gene–centromere mapping in rainbow trout: high interference over long map distances. Genetics 103:771–783

    PubMed  CAS  Google Scholar 

  • Volpe EP (1970) Chromosome mapping in the leopard frog. Genetics 64:11–21

    PubMed  CAS  Google Scholar 

  • Wang S, Bao Z, Pan J, Zhang L, Yao B, Zhan A, Bi K, Zhang Q (2004) AFLP linkage map of an intraspecific cross in Chlamys farreri. J Shellfish Res 23:491–499

    Google Scholar 

  • Wang L, Song L, Chang Y, Xu W, Ni D, Guo X (2005) A preliminary genetic map of Zhikong scallop (Chlamys farreri Jones et Preston 1904). Aquac Res 36:643–653

    Article  CAS  Google Scholar 

  • Wang H, Li F, Xiang J (2008) Microsatellite–centromere distances and microsatellite diversity in different ploidy classes of Chinese shrimp (Fenneropenaeus chinensis). Genetica 132:43–50

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Guo X (2003) Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. Biol Bull 204:327–338

    Article  PubMed  CAS  Google Scholar 

  • Zhan A, Hu J, Hu X, Hui M, Wang M, Peng W, Huang X, Wang S, Lu W, Sun C, Bao Z (2009) Construction of microsatellite-based linkage maps and identification of size-related quantitative trait loci for Zhikong scallop (Chlamys farreri). Anim Genet 40:821–831

    Article  PubMed  CAS  Google Scholar 

  • Zhan X, Fan F, You W, Yu J, Ke C (2012) Construction of an integrated map of Haliotis diversicolor using microsatellite markers. Mar Biotechnol 14:79–86

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Yang H (1999) Analysis of the causes of mass mortality of farming Chlamys farreri in summer in costal areas of Shandong, China. Mar Sci 1:44–47

    Google Scholar 

  • Zhang Y, Xu P, Lu C, Kuang Y, Zhang X, Cao D, Li C, Chang Y, Hou N, Li H, Wang S, Sun X (2011) Genetic linkage mapping and analysis of muscle fiber-related QTLs in common carp (Cyprinus carpio L.). Mar Biotechnol 13:376–392

    Article  PubMed  CAS  Google Scholar 

  • Zhao HY, Speed TP (1998) Statistical analysis of half-tetrads. Genetics 150:473–485

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the National Natural Science Foundation of China (31072207), 973 Program (2010CB126406), and National High Technology Research and Development Program (2010AA10A110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Appendix

Appendix

Table 1 Genotypic ratios of 90 microsatellite loci in gynogenetic and control families of C. farreri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, H., Li, Q., Zhao, X. et al. Genetic Positioning of Centromeres through Half-Tetrad Analysis in Gynogenetic Diploid Families of the Zhikong Scallop (Chlamys farreri). Mar Biotechnol 15, 1–15 (2013). https://doi.org/10.1007/s10126-012-9454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9454-3

Keywords

Navigation