Skip to main content
Log in

Identification and Characterization of piRNA-Like Small RNAs in the Gonad of Sea Urchin (Strongylocentrotus nudus)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Piwi-interacting RNAs (piRNAs) and their partner PIWI proteins play an essential role in fertility, germline stem cell development, as well as the basic control and evolution of animal genomes. However, research was rare with regard to piRNA population in sea urchin, a model animal intensively used for development and genetics studies. Utilizing Solexa sequencing, we present an identification of 13,051 piRNA-like RNAs expressed in male gonad of Strongylocentrotus nudus. Out of 202 tested RNAs, 94 sequences were confirmed to express in female gonad using microarray assay, suggesting that both male and female gonads are piRNA-like RNA-enriched organs. These RNAs with “U” at the 5′ end or “A” at position of 10, in size from 26 to 30 nucleotides, were predominantly 28 nt in length and tend to be clustered in small regions in genome, achieving the longest piRNA-like RNA-enriched region about 5.5 kb in scaffold78427. Alignment results showed 11 RNAs were homologous to the known piRNAs. Furthermore, BLASTn searching against sea urchin repeat element database showed these piRNA-like RNAs matched to 101 types of DNA transposons and retrotransposons, of which SPRP1, Harbinger-N2, piggyBac-N10, SINE2-1, and piggyBac-N11 were the most frequent hit elements, suggesting a transposon silencing function of these piRNA-like RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi–piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–764

    Article  PubMed  CAS  Google Scholar 

  • Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799

    Article  PubMed  CAS  Google Scholar 

  • Armisen J, Gilchrist MJ, Wilczynska A, Standart N, Miska EA (2009) Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis. Genome Res 19:1766–1775

    Article  PubMed  CAS  Google Scholar 

  • Betel D, Sheridan R, Marks DS, Sander C (2007) Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput Biol. doi:10.1371/journal.pcbi.0030222

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  PubMed  CAS  Google Scholar 

  • Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N, Berezikov E, Ketting RF, Tavaré S, Miska EA (2008) Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 31:79–90

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830

    Article  PubMed  CAS  Google Scholar 

  • Devor EJ, Huang L, Samollow PB (2008) piRNA-like RNAs in the marsupial Monodelphis domestica identify transcription clusters and likely marsupial transposon targets. Mamm Genome 19:581–586

    Article  PubMed  CAS  Google Scholar 

  • Friedländer MR, Adamidi C, Han T, Lebedeva S, Isenbarger TA, Hirst M, Marra M, Nusbaum C, Lee WL, Jenkin JC, Alvarado AS, Kim JK, Rajewsky N (2009) High-resolution profiling and discovery of planarian small RNAs. PNAS 106:11546–11551

    Article  PubMed  Google Scholar 

  • Gao X, Gulari E, Zhou X (2004) In situ synthesis of oligonucleotide microarrays. Biopolymers 73:579–596

    Article  PubMed  CAS  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202

    PubMed  Google Scholar 

  • Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Rosaria Chiang H, King N, Degnan BM, Rokhsar DS, Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455(7217):1193–1197

    Article  PubMed  CAS  Google Scholar 

  • Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science 315:1587–1590

    Article  PubMed  CAS  Google Scholar 

  • Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129:69–82

    Article  PubMed  CAS  Google Scholar 

  • Houwing S, Berezikov E, Ketting RF (2008) Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J 27:1–10

    Article  Google Scholar 

  • Kapitonov VV, Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. PNAS 103:4540–4545

    Article  PubMed  CAS  Google Scholar 

  • Kawaoka S, Hayashi N, Suzuki Y, Abe H, Sugano S, Tomari Y, Shimada T, Katsuma S (2009) The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. RNA 15:1258–1264

    Article  PubMed  CAS  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  • Kin T, Yamada K, Terai G, Okida H, Yoshinari Y, Ono Y, Kojima A, Kimura Y, Komori T, Asai K (2007) fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic Acids Res 35:D145–148

    Article  PubMed  CAS  Google Scholar 

  • Klattenhoff C, Theurkauf W (2008) Biogenesis and germline functions of piRNAs. Development 135:3–9

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Clark AG (2010) Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila. Genome Res 20:212–227

    Article  PubMed  CAS  Google Scholar 

  • Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, Hannon GJ (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:522–535

    Article  PubMed  CAS  Google Scholar 

  • Murchison EP, Kheradpour P, Sachidanandam R, Smith C, Hodges E, Xuan Z, Kellis M, Grützner F, Stark A, Hannon GJ (2008) Conservation of small RNA pathways in platypus. Genome Res 18:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi Y, Totoki Y, Toyoda A, Watanabe T, Yamamoto Y, Tokunaga K, Sakaki Y, Sasaki H, Hohjoh H (2010) Small RNA class transition from siRNA/piRNA to miRNA during pre-implantation mouse development. Nucleic Acids Res 38:5141–5151

    Article  PubMed  CAS  Google Scholar 

  • Palakodeti D, Smielewska M, Lu YC, Yeo GW, Graveley BR (2008) The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14:1174–1186

    Article  PubMed  CAS  Google Scholar 

  • Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, Lai EC, Pelisson A, Simonelig M (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • Sai Lakshmi S, Agrawal S (2008) piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res 36:D173–D177

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222

    Article  PubMed  CAS  Google Scholar 

  • Thomson T, Lin H (2009) The biogenesis and function PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25:355–376

    Article  PubMed  CAS  Google Scholar 

  • Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324

    Article  PubMed  CAS  Google Scholar 

  • Yeung ML, Bennasser Y, Watashi K, Le SY, Houzet L, Jeang KT (2009) Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 37:6575–6586

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Mr. Mingtai Liu for collecting the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Z., Liu, X. & Zhang, H. Identification and Characterization of piRNA-Like Small RNAs in the Gonad of Sea Urchin (Strongylocentrotus nudus). Mar Biotechnol 14, 459–467 (2012). https://doi.org/10.1007/s10126-011-9426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9426-z

Keywords

Navigation