Skip to main content

Advertisement

Log in

Biosynthesis of Polyhydroxyalkanaotes by a Novel Facultatively Anaerobic Vibrio sp. under Marine Conditions

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Marine bacteria have recently attracted attention as potentially useful candidates for the production of practical materials from marine ecosystems, including the oceanic carbon dioxide cycle. The advantages of using marine bacteria for the biosynthesis of poly(hydroxyalkanoate) (PHA), one of the eco-friendly bioplastics, include avoiding contamination with bacteria that lack salt-water resistance, ability to use filtered seawater as a culture medium, and the potential for extracellular production of PHA, all of which would contribute to large-scale industrial production of PHA. A novel marine bacterium, Vibrio sp. strain KN01, was isolated and characterized in PHA productivity using various carbon sources under aerobic and aerobic–anaerobic marine conditions. The PHA contents of all the samples under the aerobic–anaerobic condition, especially when using soybean oil as the sole carbon source, were enhanced by limiting the amount of dissolved oxygen. The PHA accumulated using soybean oil as a sole carbon source under the aerobic–anaerobic condition contained 14% 3-hydroxypropionate (3HP) and 3% 5-hydroxyvalerate (5HV) units in addition to (R)-3-hydroxybutyrate (3HB) units and had a molecular weight of 42 × 103 g/mol. The present result indicates that the activity of the beta-oxidation pathway under the aerobic–anaerobic condition is reduced due to a reduction in the amount of dissolved oxygen. These findings have potential for use in controlling the biosynthesis of long main-chain PHA by regulating the activity of the beta-oxidation pathway, which also could be regulated by varying the dissolved oxygen concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe H, Doi Y, Fukushima T, Eya H (1994) Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. 61–3. Int J Biol Macromol 16:115–119

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Campbell JW, Morgan-Kiss RM, Cronan JE Jr (2003) A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol 47:793–805

    Article  PubMed  CAS  Google Scholar 

  • De Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    PubMed  Google Scholar 

  • Doi Y (ed) (1990) Microbial polyesters. VCH Publishers, New York, USA

    Google Scholar 

  • Doi Y, Steinbüchel A (eds) (2001) Biopolymers. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Doi Y, Tamaki A, Kunioka M, Soga K (1987) Biosynthesis of an unusual copolyester (10 mol-percent 3-hydroxybutyrate and 90 mol-percent 3-hydroxyvalerate units) in alcaligenes-eutrophus from pentanoic acid. J Chem Soc Chem Comm:1635–1636.

  • Fiedler S, Steinbuchel A, Rehm BH (2002) The role of the fatty acid beta-oxidation multienzyme complex from pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178:149–160

    Article  PubMed  CAS  Google Scholar 

  • Fuchtenbusch B, Wullbrandt D, Steinbuchel A (2000) Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Appl Microbiol Biot 53:167–172

    Article  CAS  Google Scholar 

  • Fukui T, Doi Y (1997) Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179:4821–4830

    PubMed  CAS  Google Scholar 

  • Fukui T, Ohsawa K, Mifune J, Orita I, Nakamura S (2011) Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator h16. Appl Microbiol Biot 89:1527–1536

    Article  CAS  Google Scholar 

  • Fukui T, Suzuki M, Tsuge T, Nakamura S (2009) Microbial synthesis of poly((r)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator. Biomacromolecules 10:700–706

    Article  PubMed  CAS  Google Scholar 

  • Fukui T, Yokomizo S, Kobayashi G, Doi Y (1999) Co-expression of polyhydroxyalkanoate synthase and (R)-enoyl-CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in Escherichia coli. FEMS Microbiol Lett 170:69–75

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Garcia Y, Nungaray J, Cordova J, Gonzalez-Reynoso O, Koller M, Atlic A, Braunegg G (2008) Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961. J Ind Microbiol Biot 35:629–633

    Article  CAS  Google Scholar 

  • Iwata T, Aoyagi Y, Fujita M, Yamane H, Doi Y, Suzuki Y, Takeuchi A, Uesugi K (2004) Processing of a strong biodegradable poly[(R)-3-hydroxybutyrate] fiber and a new fiber structure revealed by micro-beam X-ray diffraction with synchrotron radiation. Macromol Rapid Comm 25:1100–1104

    Article  CAS  Google Scholar 

  • Karl DM (2007) Microbial oceanography: paradigms, processes, and promise. Nat Rev Microbiol 5:759–769

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Enomoto S, Sakarazaki R, Kuwahara S (1963) A new selective medium for pathogenic vibrios: T.C.B.S. Agar. Jap J Bacteriol 18:387–391

    Article  CAS  Google Scholar 

  • Lemoignei M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chim Biol 8:770–782

    Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8

    Article  PubMed  CAS  Google Scholar 

  • Liebergesell M, Steinbuchel A (1993) Cloning and molecular analysis of the poly(3-hydroxybutyric acid) biosynthetic genes of Thiocystis violacea. Appl Microbiol Biot 38:493–501

    Article  CAS  Google Scholar 

  • Lopez NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Potter M, Steinbuchel A, Mendez BS (2009) Pseudomonas extremaustralis sp. Nov., a poly(3-hydroxybutyrate) producer isolated from an Antarctic environment. Curr Microbiol 59:514–519

    Article  PubMed  CAS  Google Scholar 

  • Molitoris E, Joseph SW, Krichevsky MI, Sindhuhardja W, Colwell RR (1985) Characterization and distribution of Vibrio-alginolyticus and Vibrio-parahaemolyticus isolated in Indonesia. Appl Environ Microb 50:1388–1394

    CAS  Google Scholar 

  • Moran MA, Miller WL (2007) Resourceful heterotrophs make the most of light in the coastal ocean. Nat Rev Microbiol 5:792–800

    Article  PubMed  CAS  Google Scholar 

  • Morris GK, Merson MH, Huq I, Kibrya AKMG, Black R (1979) Comparison of four plating media for isolating Vibrio-cholerae. J Clin Microbiol 9:79–83

    PubMed  CAS  Google Scholar 

  • Nakamura S, Doi Y, Scandola M (1992) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 25:4237–4241

    Article  CAS  Google Scholar 

  • Nakanishi Y (1963) An isolation agar medium for cholera and enteropathogenic halophilic vibrios. Modern Media 9:246

    Google Scholar 

  • Park SJ, Ahn WS, Green PR, Lee SY (2001) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biomacromolecules 2:248–254

    Article  PubMed  CAS  Google Scholar 

  • Pizzoli M, Scandola M, Ceccorulli G (1994) Crystallization kinetics and morphology of poly(3-hydroxybutyrate) cellulose ester blends. Macromolecules 27:4755–4761

    Article  CAS  Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “knallgas ” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Article  PubMed  Google Scholar 

  • Qi Q, Rehm BH (2001) Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology 147:3353–3358

    PubMed  CAS  Google Scholar 

  • Rainey FA, Stackebrandt E (1993) 16 s rDNA analysis reveals phylogenetic diversity among the polysaccharolytic Clostridia. FEMS Microbiol Lett 113:125–128

    Article  PubMed  CAS  Google Scholar 

  • Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Doi Y (1994) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas-acidovorans. Int J Biol Macromol 16:99–104

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y (1994) Physical-properties and biodegradability of microbial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 27:878–880

    Article  CAS  Google Scholar 

  • Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbuchel A (1999) A sensitive, viable-colony staining method using nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  PubMed  CAS  Google Scholar 

  • Steinbuchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1993) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 10:347–350

    PubMed  CAS  Google Scholar 

  • Sun WQ, Teng K, Meighen E (1995) Detection of poly(3-hydroxybutyrate) granules by electron-microscopy of Vibrio-harveyi stained with malachite green. Can J Microbiol 41:131–137

    Article  CAS  Google Scholar 

  • Timm A, Steinbuchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microb 56:3360–3367

    CAS  Google Scholar 

  • Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A, Doi Y (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett 184:193–198

    Article  PubMed  CAS  Google Scholar 

  • Tsuge T, Watanabe S, Shimada D, Abe H, Doi Y, Taguchi S (2007) Combination of n149s and d171g mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis. FEMS Microbiol Lett 277:217–222

    Article  PubMed  CAS  Google Scholar 

  • Tsuge T, Yamamoto T, Yano K, Abe H, Doi Y, Taguchi S (2009) Evaluating the ability of polyhydroxyalkanoate synthase mutants to produce P(3HB-co-3HA) from soybean oil. Macromol Biosci 9:71–78

    Article  PubMed  CAS  Google Scholar 

  • Umani SF, Del Negro P, Larato C, De Vittor C, Cabrini M, Celio M, Falconi C, Tamberlich F, Azam F (2007) Major inter-annual variations in microbial dynamics in the Gulf of Trieste (northern Adriatic Sea) and their ecosystem implications. Aquat Microb Ecol 46:163–175

    Article  Google Scholar 

  • Wang Q, Zhang HX, Chen Q, Chen XL, Zhang YZ, Qi QS (2010) A marine bacterium accumulates polyhydroxyalkanoate consisting of mainly 3-hydroxydodecanoate and 3-hydroxydecanoate. World J Microb Biot 26:1149–1153

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the RIKEN Biomass Engineering Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Numata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Numata, K., Doi, Y. Biosynthesis of Polyhydroxyalkanaotes by a Novel Facultatively Anaerobic Vibrio sp. under Marine Conditions. Mar Biotechnol 14, 323–331 (2012). https://doi.org/10.1007/s10126-011-9416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9416-1

Keywords

Navigation