Skip to main content
Log in

Cold-adapted Features of Arginine Kinase from the Deep-sea Clam Calyptogena kaikoi

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The heterodont clam Calyptogena kaikoi, which inhabits depths exceeding 3,500 m where low ambient temperatures prevail, has an unusual two-domain arginine kinase (AK) with molecular mass of 80 kDa, twice that of typical AKs. The purpose of this work is to investigate the nature of the adaptations of this AK for functioning at low temperatures. Recombinant C. kaikoi AK constructs were expressed, and their two-substrate kinetic constants (k cat, K a, and K ia) were determined at 10°C and 25°C, respectively. When measured at 25°C, the K ia values were tenfold larger than those for corresponding K a values, while at 10°C, the K ia values decreased remarkably, but the K a values were almost unchanged. The Calyptogena two-domain enzyme has threefold higher catalytic efficiency, calculated by k cat/(K ARGa ·K ATPia ), at 10°C, than that at 25°C, reflecting adaptation for function at reduced ambient temperatures. The activation energy (E a) and thermodynamic parameters were determined for Calyptogena two-domain enzyme and compared with those of two-domain enzymes from mesophilic Corbicula and Anthopleura. The value for E a of Calyptogena enzyme were about half of those for mesophilic enzymes, and a larger decrease in entropy was observed in Calyptogena AK reaction. Although large decrease in entropy increases the ΔG o‡ value and consequently lowers the k cat value, this is compensated with its lower E a value thereby minimizing the reduction in its k cat value. These thermodynamic properties, together with the kinetic ones, are also present in the separated domain 2 of the Calyptogena two-domain enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AK:

Arginine kinase

References

  • Andrews L, Graham J, Snider M, Fraga D (2008) Characterization of a novel bacterial arginine kinase from Desulfotalea psychrophila. Comp Biochem Physiol B 150:312–319

    Article  PubMed  Google Scholar 

  • Arp AJ, Childress JJ (1981) Blood function in the hydrothermal vent vestimentiferan tube worm. Science 213:342–344

    Article  PubMed  CAS  Google Scholar 

  • Aurilia V, Parracino A, D’Auria S (2008) Microbial carbohydrate esterases in cold adapted environments. Gene 410:234–240

    Article  PubMed  CAS  Google Scholar 

  • Barman TE, Travers F, Bertrand R, Roseau G (1978) Transient-phase studies on the arginine kinase reaction. Eur J Biochem 89:243–249

    Article  PubMed  CAS  Google Scholar 

  • Brooks JM, Kennicutt MC 2nd, Fisher CR, Macko SA, Cole K, Childress JJ, Bidigare RR, Vetter RD (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238:1138–1142

    Article  PubMed  CAS  Google Scholar 

  • Ciardiello MA, Camardella L, Carratore V, di Prisco G (2000) l-Glutamate dehydrogenase from the antarctic fish Chaenocephalus aceratus. Primary structure, function and thermodynamic characterisation: relationship with cold adaptation. Biochim Biophys Acta 1543:11–23

    Article  PubMed  CAS  Google Scholar 

  • Cleland WW (1979) Statistical analysis of enzyme kinetic data. Methods Enzymol 63:103–138

    Article  PubMed  CAS  Google Scholar 

  • Compaan DM, Ellington WR (2003) Functional consequences of a gene duplication and fusion event in an arginine kinase. J Exp Biol 206:1545–1556

    Article  PubMed  CAS  Google Scholar 

  • Conejo M, Bertin M, Pomponi S, Ellington WR (2008) The early evolution of the phosphagen kinases—insights from choanoflagellate and poriferan arginine kinases. J Mol Evol 66:11–20

    Article  PubMed  CAS  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal sprirngs on the galapagos rift. Science 203:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276:25791–25796

    Article  PubMed  Google Scholar 

  • D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Feller G, Gerday C (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357:917–925

    Article  PubMed  Google Scholar 

  • Edmiston PL, Schavolt KL, Kersteen EA, Moore NR, Borders CL (2001) Creatine kinase: a role for arginine-95 in creatine binding and active site organization. Biochim Biophys Acta 1546:291–298

    Article  PubMed  CAS  Google Scholar 

  • Ellington WR (1989) Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J Exp Biol 143:177–194

    PubMed  CAS  Google Scholar 

  • Ellington WR (2001) Evolution and physiological roles of phosphagen systems. Annu Rev Physiol 63:289–325

    Article  PubMed  CAS  Google Scholar 

  • Ellington WR, Suzuki T (2006) Evolution and divergence of creatine kinase genes. In: Vial C (ed) Molecular anatomy and physiology of proteins: creatine kinase. Nova Science, New York, pp 1–27

    Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  PubMed  CAS  Google Scholar 

  • Fields PA, Houseman DE (2004) Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus. Mol Biol Evol 21:2246–2255

    Article  PubMed  CAS  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto N, Tanaka K, Suzuki T (2005) Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase. FEBS Lett 579:1688–1692

    Article  PubMed  CAS  Google Scholar 

  • Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342:119–131

    Article  PubMed  CAS  Google Scholar 

  • Grossman SH (1983) Interaction of creatine kinase from monkey brain with substrate: analysis of kinetics and fluorescence polarization. J Neurochem 41:729–736

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University, Oxford

    Google Scholar 

  • Iwanami K, Iseno S, Uda K, Suzuki T (2009) A novel arginine kinase from the shrimp Neocaridina denticulata: the fourth arginine kinase gene lineage. Gene 437:80–87

    Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  PubMed  CAS  Google Scholar 

  • Kenyon GL, Reed GH (1983) Creatine kinase: structure-activity relationships. Adv Enzymol Relat Areas Mol Biol 54:367–426

    PubMed  CAS  Google Scholar 

  • Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Wang S, Fang Y, Li H, Liu S, Liu H (2010) Cloning, expression, purification, and characterization of cold-adapted alpha-amylase from Pseudoalteromonas arctica GS230. Protein J 29:591–597

    Article  PubMed  CAS  Google Scholar 

  • Marx JC, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol (NY) 9:293–304

    Article  CAS  Google Scholar 

  • McLeish M, Kenyon G (2005) Relating structure to mechanism in creatine kinase. Crit Rev Biochem Mol Biol 40:1–20

    Article  PubMed  CAS  Google Scholar 

  • Morrison JF (1973) Arginine kinase and other invertebrate guanidino kinases. In: Boyer PC (ed) The enzymes. Academic, New York, pp 457–486

    Google Scholar 

  • Morrison JF, James E (1965) The mechanism of the reaction catalysed by adenosine triphosphate-creatine phosphotransferase. Biochem J 97:37–52

    PubMed  CAS  Google Scholar 

  • Pereira CA, Alonso GD, Paveto MC, Iribarren A, Cabanas ML, Torres HN, Flawia MM (2000) Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites. J Biol Chem 275:1495–1501

    Article  PubMed  CAS  Google Scholar 

  • Rao BD, Buttlaire DH, Cohn M (1976) 31P NMR studies of the arginine kinase reaction. Equilibrium constants and exchange rates at stoichiometric enzyme concentration. J Biol Chem 251:6981–6986

    PubMed  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  PubMed  CAS  Google Scholar 

  • Simpson BK, Haard NF (1984) Trypsin from Greenland cod, Gadus ogac. Isolation and comparative properties. Comp Biochem Physiol B 79:613–622

    Article  PubMed  CAS  Google Scholar 

  • Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57

    Article  PubMed  CAS  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    Article  PubMed  CAS  Google Scholar 

  • Somero GN (2004) Adaptation of enzymes to temperature: searching for basic “strategies”. Comp Biochem Physiol B Biochem Mol Biol 139:321–333

    Article  PubMed  Google Scholar 

  • Sotelo-Mundo RR, Lopez-Zavala AA, Garcia-Orozco KD, Arvizu-Flores AA, Velazquez-Contreras EF, Valenzuela-Soto EM, Rojo-Dominguez A, Kanost MR (2007) The lysozyme from insect (Manduca sexta) is a cold-adapted enzyme. Protein Pept Lett 14:774–778

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Kawasaki Y, Furukohri T (1997) Evolution of phosphagen kinase. Isolation, characterization and cDNA-derived amino acid sequence of two-domain arginine kinase from the sea anemone Anthopleura japonicus. Biochem J 328:301–306

    PubMed  CAS  Google Scholar 

  • Suzuki T, Kawasaki Y, Unemi Y, Nishimura Y, Soga T, Kamidochi M, Yazawa Y, Furukohri T (1998) Gene duplication and fusion have occurred frequently in the evolution of phosphagen kinases—a two-domain arginine kinase from the clam Pseudocardium sachalinensis. Biochim Biophys Acta 1388:253–259

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Kamidochi M, Inoue N, Kawamichi H, Yazawa Y, Furukohri T, Ellington WR (1999) Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase. Biochem J 340:671–675

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Fukuta H, Nagato H, Umekawa M (2000) Arginine kinase from Nautilus pompilius, a living fossil. Site-directed mutagenesis studies on the role of amino acid residues in the Guanidino specificity region. J Biol Chem 275:23884–23890

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Sugimura N, Taniguchi T, Unemi Y, Murata T, Hayashida M, Yokouchi K, Uda K, Furukohri T (2002) Two-domain arginine kinases from the clams Solen strictus and Corbicula japonica: exceptional amino acid replacement of the functionally important D(62) by G. Int J Biochem Cell Biol 34:1221–1229

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Tomoyuki T, Uda K (2003) Kinetic properties and structural characteristics of an unusual two-domain arginine kinase of the clam Corbicula japonica. FEBS Lett 533:95–98

    Article  PubMed  CAS  Google Scholar 

  • Tada H, Suzuki T (2010) Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus. II. Evidence from site-directed mutagenesis studies. Int J Biol Macromol 47:250–254

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Suzuki T (2004) Role of amino-acid residue 95 in substrate specificity of phosphagen kinases. FEBS Lett 573:78–82

    Article  PubMed  CAS  Google Scholar 

  • Travers F, Bertrand R, Roseau G, Van Thoai N (1978) Cryoenzymologic studies on arginine kinase: solvent, temperature and pH effects on the overall reaction. Eur J Biochem 88:523–528

    Google Scholar 

  • Tutino ML, di Prisco G, Marino G, de Pascale D (2009) Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept Lett 16:1172–1180

    Article  PubMed  CAS  Google Scholar 

  • Uda K, Tanaka K, Bailly X, Zal F, Suzuki T (2005) Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase. Int J Biol Macromol 37:54–60

    Article  PubMed  CAS  Google Scholar 

  • Uda K, Fujimoto N, Akiyama Y, Mizuta K, Tanaka K, Ellington WR, Suzuki T (2006) Evolution of the arginine kinase gene family. Comp Biochem Physiol Part D Genom Proteom 1:209–218

    Google Scholar 

  • Uda K, Yamamoto K, Iwasaki I, Iwai M, Fujikura K, Ellington WR, Suzuki T (2008) Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi—evidence of two active domains. Comp Biochem Physiol Part B Biochem Mol Biol 151:176–182

    Article  Google Scholar 

  • Ueda M, Asano T, Nakazawa M, Miyatake K, Inouye K (2008) Purification and characterization of novel raw-starch-digesting and cold-adapted alpha-amylases from Eisenia foetida. Comp Biochem Physiol B Biochem Mol Biol 150:125–130

    Article  PubMed  Google Scholar 

  • Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K (2010) A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethylcellulase, beta-glucosidase, beta-1,3 glucanase, and beta-xylosidase. Comp Biochem Physiol B Biochem Mol Biol 157:26–32

    Article  PubMed  Google Scholar 

  • Watts D, Bannister L (1970) Location of arginine kinase in the cilia of Tetrahymena pyriformis. Nature 226:450–451

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Ye S, Guo S, Yan W, Bartlam M, Rao Z (2010) Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity. FASEB J 24:242–252

    Article  PubMed  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    PubMed  CAS  Google Scholar 

  • Wyss M, Smeitink J, Wevers R, Wallimann T (1992) Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102:119–166

    Article  PubMed  CAS  Google Scholar 

  • Yousef M, Clark S, Pruett P, Somasundaram T, Ellington W, Chapman M (2003) Induced fit in guanidino kinases—comparison of substrate-free and transition state analog structures of arginine kinase. Protein Sci 12:103–111

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Somasundaram T, Blanc E, Parthasarathy G, Ellington W, Chapman M (1998) Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc Natl Acad Sci USA 95:8449–8454

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank W. Ross Ellington, Florida State University, for critically reading the manuscript. This work was supported by a Grant-in-Aid for Scientific Research in Japan to TS (17570062 and 20570072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Yamamoto, K., Tada, H. et al. Cold-adapted Features of Arginine Kinase from the Deep-sea Clam Calyptogena kaikoi . Mar Biotechnol 14, 294–303 (2012). https://doi.org/10.1007/s10126-011-9411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9411-6

Keywords

Navigation