Skip to main content
Log in

An Extracellular S1-Type Nuclease of Marine Fungus Penicillium melinii

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

An extracellular nuclease was purified 165-fold with a specific activity of 41,250 U/mg poly(U) by chromatography with modified chitosan from the culture of marine fungus Penicillium melinii isolated from colonial ascidium collected near Shikotan Island, Sea of Okhotsk, at a depth of 123 m. The purified nuclease is a monomer with the molecular weight of 35 kDa. The enzyme exhibits maximum activity at pH 3.7 for DNA and RNA. The enzyme is stable until 75°C and in the pH range of 2.5–8.0. The enzyme endonucleolytically degrades ssDNA and RNA by 3′–5′ mode to produce 5′-oligonucleotides and 5′-mononucleotides; however, it preferentially degrades poly(U). The enzyme can digest dsDNA in the presence of pregnancy-specific beta-1-glycoprotein-1. The nuclease acts on closed circular double-stranded DNA to produce opened circular DNA and then the linear form DNA by single-strand scission. DNA sequence encoding the marine fungus P. melinii endonuclease revealed homology to S1-type nucleases. The tight correlation found between the extracellular endonuclease activity and the rate of H3-thymidine uptake by actively growing P. melinii cells suggests that this nuclease is required for fulfilling the nucleotide pool of precursors of DNA biosynthesis during the transformation of hyphae into the aerial mycelium and conidia in stressful environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Artemchuk NY (1981) Microflora of USSR seas. Nauka, Moscow

    Google Scholar 

  • Bilai VI (1982) Definition of the growth and bio synthetic activity of fungi. In: Bilay VI (ed) Method of experimental mycology. Naukova dumka, Kiev, pp 146–147

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Desai NA, Shankar V (2003) Single-strand-specific nucleases. FEMS Microbiol Rev 26:457–491

    Article  PubMed  CAS  Google Scholar 

  • Desai NA, Shankar V (2007) Single-strand-specific nuclease from Basidiobolus haptosporus (nuclease Bh1). Sci Res Assay 2:139–146

    Google Scholar 

  • Frazer MJ, Low RL (1993) Fungal and mitochondrial nucleases. In: Linn SM, Lloyd RS, Roberts RJ (eds) Nucleases. Cold Spring Harbor Laboratory Press, New York, pp 171–207

    Google Scholar 

  • Fujimoto M, Kuninaka A, Yoshino H (1974) Purification of a nuclease from Penicillium citrinum. Agric Biol Chem 38:777–783

    Article  CAS  Google Scholar 

  • Gafurov YM (1997) The methods of DNA investigation. Dalnauka, Vladivostok

    Google Scholar 

  • Hsia KC, Li CL, Yuan HS (2005) Structural and functional insight into sugar-nonspecific nucleases in host defense. Curr Opin Struct Biol 15:126–134

    Article  PubMed  CAS  Google Scholar 

  • Hyde KD, Wong SW, Jones EBG (1998) Diluviocola capensis gen. and sp. nov., a freshwater ascomycete with unique polar caps on the ascospores. Fungal Diversity 1:133–146

    Google Scholar 

  • Ito J, Fukuda H (2002) ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14:3201–3211

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Matsuura Y, Minamura N (1994) Purification and characterization of fungal nuclease composed of heterogeneous subunits. Arch Biochem Biophys 309:160–167

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lamy B, Moutaouakil M, Latge J-P, Davies J (1991) Secretion of potential virulence factor, a fungal ribonucleotoxin, during human aspergillosis infections. Mol Microbiol 5:1811–1815

    Article  PubMed  CAS  Google Scholar 

  • Maekawa K, Tsunasawa S, Dibo G, Sakiyama F (1991) Primary structure of nuclease P1 from Penicillium citrinum. Eur J Biochem 200:651–661

    Article  PubMed  CAS  Google Scholar 

  • Marchetti F, Bishop JB, Lowe X, Generoso WM, Hozier J, Wyrobek AJ (2001) Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc Natl Acad Sci USA 9:3952–3957

    Article  Google Scholar 

  • Martin SA, Ullrich RS, Meyer WL (1986) A comparative study of nucleases exhibiting preference for single-stranded nucleic acid. Biochim Biophys Acta 867:76–80

    CAS  Google Scholar 

  • Matousek J (1986) The substrate specificity of pollen extracellular nuclease. Biochem Cell Biol 64:891–897

    CAS  Google Scholar 

  • Mavromatis K, Tsigos I, Tzanodaskalaki M, Kokkinidis M, Bouriotis V (2002) Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphatase. FEBS J 269:2330–2335

    CAS  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  PubMed  Google Scholar 

  • Muramoto Y, Watanabe A, Nakamura T, Takabe T (1999) Enhanced expression of a nuclease gene in leaves of barley plants under salt stress. Gene 234:315–321

    Article  PubMed  CAS  Google Scholar 

  • Newell SY (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Biol Ecol 200:187–206

    Article  Google Scholar 

  • Nicieza RG, Huergo J, Connolly BA, Sánchez J (1999) Purification, characterization and role of nucleases and serine proteases in Streptomyces differentiation: analogies with the biochemical processes described in late-steps of eukaryotic apoptosis. J Biol Chem 274:20366–20375

    Article  PubMed  CAS  Google Scholar 

  • Olufsen M, Smalas AO, Moe E, Brandsdal BO (2005) Increased flexibility as a strategy for cold adaptation. J Biol Chem 280:18042–18048

    Article  PubMed  CAS  Google Scholar 

  • Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci 134:1–9

    Google Scholar 

  • Pimkin M, Miller CG, Blakesley L, Oleykowski CA, Kodali NS, Yeung AT (2006) Characterization of a periplasmic S1-like nuclease coded by the Mesorhizobium loti symbiosis island. Biochem Biophys Res Commun 343:77–84

    Article  PubMed  CAS  Google Scholar 

  • Sheryl AM, Robert C, Meyer U, William L (1986) A comparative study of nucleases exhibiting preference for single-stranded nucleic acid. Biochim Biophys Acta (BBA) - Gene Struct Expr 867:76–80

    Google Scholar 

  • Sokal RR, Rolf RJ (1981) Biometry, 2nd edn. W.H. Freeman, New York

    Google Scholar 

  • Thelen MP, Northcote DH (1989) Identification and purification of a nuclease from Zinnia elegans L: a potential molecular marker for xylogenesis. Planta 179:181–195

    Article  CAS  Google Scholar 

  • Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nuc Acids Res 32:2632–2641

    Article  CAS  Google Scholar 

  • Van der Westhuizen AJ, Gliemeroth AK, Wenzel W, Hess D (1987) Isolation and partial characterization of an extracellular nuclease from pollen of Petunia hybrid. J Plant Physiol 131:373–384

    Google Scholar 

  • Vogt V (1973) Purification and futher properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem 33:192–200

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Lahm A, Sakiyama F, Suck D (1991) Crystal structure of Penicillium citrinum P1 nuclease at 2.8 Å resolution. EMBO J 10:1607–1618

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported with funding by grants of RFBR 08-08-00975-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa A. Balabanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balabanova, L.A., Gafurov, Y.M., Pivkin, M.V. et al. An Extracellular S1-Type Nuclease of Marine Fungus Penicillium melinii . Mar Biotechnol 14, 87–95 (2012). https://doi.org/10.1007/s10126-011-9392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9392-5

Keywords

Navigation