Skip to main content

Advertisement

Log in

Hepatocyte Nuclear Factor 4α Transactivates the Mitochondrial Alanine Aminotransferase Gene in the Kidney of Sparus aurata

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Alanine aminotransferase (ALT) plays an important role in amino acid metabolism and gluconeogenesis. The preference of carnivorous fish for protein amino acids instead of carbohydrates as a source of energy lead us to study the transcriptional regulation of the mitochondrial ALT (mALT) gene and to characterize the enzyme kinetics and modulation of mALT expression in the kidney of gilthead sea bream (Sparus aurata) under different nutritional and hormonal conditions. 5′-Deletion analysis of mALT promoter in transiently transfected HEK293 cells, site-directed mutagenesis and electrophoretic mobility shift assays allowed us to identify HNF4α as a new factor involved in the transcriptional regulation of mALT expression. Quantitative RT-PCR assays showed that starvation and the administration of streptozotocin (STZ) decreased HNF4α levels in the kidney of S. aurata, leading to the downregulation of mALT transcription. Analysis of the tissue distribution showed that kidney, liver, and intestine were the tissues with higher mALT and HNF4α expression. Kinetic analysis indicates that mALT enzyme is more efficient in catalyzing the conversion of l-alanine to pyruvate than the reverse reaction. From these results, we conclude that HNF4α transactivates the mALT promoter and that the low levels of mALT expression found in the kidney of starved and STZ-treated fish result from a decreased expression of HNF4α. Our findings suggest that the mALT isoenzyme plays a major role in oxidazing dietary amino acids, and points to ALT as a target for a biotechnological action to spare protein and optimize the use of dietary nutrients for fish culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggelidou E, Iordanidou P, Tsantili P, Papadopoulos G, Hadzopoulou-Cladaras M (2004) Critical role of residues defining the ligand binding pocket in hepatocyte nuclear factor-4alpha. J Biol Chem 279:30680–30688

    Article  PubMed  CAS  Google Scholar 

  • Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    Article  PubMed  CAS  Google Scholar 

  • Anemaet IG, Metón I, Salgado MC, Fernández F, Baanante IV (2008) A novel alternatively spliced transcript of cytosolic alanine aminotransferase gene associated with enhanced gluconeogenesis in liver of Sparus aurata. Int J Biochem Cell Biol 40:2833–2844

    Article  PubMed  CAS  Google Scholar 

  • Anemaet IG, González JD, Salgado MC, Giralt M, Fernández F, Baanante IV, Metón I (2010) Transactivation of cytosolic alanine aminotransferase gene promoter by p300 and c-Myb. J Mol Endocrinol 45:119–132

    Article  PubMed  CAS  Google Scholar 

  • Bartoov-Shifman R, Hertz R, Wang H, Wollheim CB, Bar-Tana J, Walker MD (2002) Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4 alpha. J Biol Chem 277:25914–25919

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942

    Article  PubMed  CAS  Google Scholar 

  • Cowey CB, Walton MJ (1989) Intermediary metabolism. In: Halver JE (ed) Fish Nutrition. Academic, San Diego

    Google Scholar 

  • De Rosa G, Swick RW (1975) Metabolic implications of the distribution of the alanine aminotransferase isoenzymes. J Biol Chem 250:7961–7967

    Google Scholar 

  • Duda K, Chi YI, Shoelson SE (2004) Structural basis for HNF-4alpha activation by ligand and coactivator binding. J Biol Chem 279:23311–23316

    Article  PubMed  CAS  Google Scholar 

  • Eeckhoute J, Moerman E, Bouckenooghe T, Lukoviak B, Pattou F, Formstecher P, Kerr-Conte J, Vandewalle B, Laine B (2003a) Hepatocyte nuclear factor 4 alpha isoforms originated from the P1 promoter are expressed in human pancreatic beta-cells and exhibit stronger transcriptional potentials than P2 promoter-driven isoforms. Endocrinology 144:1686–1694

    Article  PubMed  CAS  Google Scholar 

  • Eeckhoute J, Oxombre B, Formstecher P, Lefebvre P, Laine B (2003b) Critical role of charged residues in helix 7 of the ligand binding domain in hepatocyte nuclear factor 4alpha dimerisation and transcriptional activity. Nucleic Acids Res 31:6640–6650

    Article  PubMed  CAS  Google Scholar 

  • Fernández F, Miquel AG, Córdoba M, Varas M, Metón I, Caseras A, Baanante IV (2007) Effects of diets with distinct protein-to-carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurata, L.) fingerlings. J Exp Mar Biol Ecol 343:1–10

    Article  Google Scholar 

  • Fynn-Aikins K, Hughes SG, Vandenberg GW (1995) Protein retention and liver aminotransferase activities in Atlantic salmon fed diets containing different energy sources. Comp Biochem Physiol A Comp Physiol 111:163–170

    Article  Google Scholar 

  • Garrison WD, Battle MA, Yang C, Kaestner KH, Sladek FM, Duncan SA (2006) Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon. Gastroenterology 130:1207–1220

    Article  PubMed  CAS  Google Scholar 

  • Glinghammar B, Rafter I, Lindström AK, Hedberg JJ, Andersson HB, Lindblom P, Berg AL, Cotgreave I (2009) Detection of the mitochondrial and catalytically active alanine aminotransferase in human tissues and plasma. Int J Mol Med 23:621–631

    Article  PubMed  CAS  Google Scholar 

  • Gray S, Wang B, Orihuela Y, Hong EG, Fisch S, Haldar S, Cline GW, Kim JK, Peroni OD, Kahn BB, Jain MK (2007) Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab 5:305–312

    Article  PubMed  CAS  Google Scholar 

  • Green VJ, Kokkotou E, Ladias JA (1998) Critical structural elements and multitarget protein interactions of the transcriptional activator AF-1 of hepatocyte nuclear factor 4. J Biol Chem 273:29950–29957

    Article  PubMed  CAS  Google Scholar 

  • Gupta RK, Vatamaniuk MZ, Lee CS, Flaschen RC, Fulmer JT, Matschinsky FM, Duncan SA, Kaestner KH (2005) The MODY1 gene HNF-4alpha regulates selected genes involved in insulin secretion. J Clin Invest 115:1006–1015

    PubMed  CAS  Google Scholar 

  • Gupta RK, Gao N, Gorski RK, White P, Hardy OT, Rafiq K, Brestelli JE, Chen G, Stoeckert CJ Jr, Kaestner KH (2007) Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4alpha. Genes Dev 21:756–769

    Article  PubMed  CAS  Google Scholar 

  • Hadzopoulou-Cladaras M, Kistanova E, Evagelopoulou C, Zeng S, Cladaras C, Ladias JA (1997) Functional domains of the nuclear receptor hepatocyte nuclear factor 4. J Biol Chem 272:539–550

    Article  PubMed  CAS  Google Scholar 

  • Hayashi YS (1993) Alanine aminotransferase from gill tissue of the brackish-water bivalve Corbicula japonica (Prime): subcellular localization and some enzymatic properties. J Exp Mar Biol Ecol 170:45–54

    Article  CAS  Google Scholar 

  • Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ (2001) Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21:1393–1403

    Article  PubMed  CAS  Google Scholar 

  • Hemre GI, Mommsen T, Krogdahl Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194

    Article  CAS  Google Scholar 

  • Inoue Y, Hayhurst GP, Inoue J, Mori M, Gonzalez FJ (2002) Defective ureagenesis in mice carrying a liver-specific disruption of hepatocyte nuclear factor 4alpha (HNF4alpha ). HNF4alpha regulates ornithine transcarbamylase in vivo. J Biol Chem 277:25257–25265

    Article  PubMed  CAS  Google Scholar 

  • Iordanidou P, Aggelidou E, Demetriades C, Hadzopoulou-Cladaras M (2005) Distinct amino acid residues may be involved in coactivator and ligand interactions in hepatocyte nuclear factor-4alpha. J Biol Chem 280:21810–21819

    Article  PubMed  CAS  Google Scholar 

  • Jadhao SB, Yang RZ, Lin Q, Hu H, Anania FA, Shuldiner AR, Gong DW (2004) Murine alanine aminotransferase: cDNA cloning, functional expression, and differential gene regulation in mouse fatty liver. Hepatology 39:1297–1302

    Article  PubMed  Google Scholar 

  • Jiang G, Sladek FM (1997) The DNA binding domain of hepatocyte nuclear factor 4 mediates cooperative, specific binding to DNA and heterodimerization with the retinoid X receptor alpha. J Biol Chem 272:1218–1225

    Article  PubMed  CAS  Google Scholar 

  • Junod A, Lambert AE, Stauffacher W, Renold AE (1969) Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest 48:2129–2139

    Article  PubMed  CAS  Google Scholar 

  • Jürss K, Bastrop R (1995) Amino acid metabolism in fish. Biochem Mol Biol Fishes 4:159–189

    Article  Google Scholar 

  • Kardassis D, Falvey E, Tsantili P, Hadzopoulou-Cladaras M, Zannis V (2002) Direct physical interactions between HNF-4 and Sp1 mediate synergistic transactivation of the apolipoprotein CIII promoter. Biochemistry 41:1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Kimura A, Nishiyori A, Murakami T, Tsukamoto T, Hata S, Osumi T, Okamura R, Mori M, Takiguchi M (1993) Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) represses transcription from the promoter of the gene for ornithine transcarbamylase in a manner antagonistic to hepatocyte nuclear factor-4 (HNF-4). J Biol Chem 268:11125–11133

    PubMed  CAS  Google Scholar 

  • Kistanova E, Dell H, Tsantili P, Falvey E, Cladaras C, Hadzopoulou-Cladaras M (2001) The activation function-1 of hepatocyte nuclear factor-4 is an acidic activator that mediates interactions through bulky hydrophobic residues. Biochem J 356:635–642

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1996) Interpreting cDNA sequences: Some insights from studies on translation. Mammalian Genome 7:563–574

    Article  PubMed  CAS  Google Scholar 

  • Li J, Ning G, Duncan SA (2000) Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev 14:464–474

    PubMed  CAS  Google Scholar 

  • Macdonald M, Longacre M, Langberg EC, Tibell A, Kendrick M, Fukao T, Ostenson CG (2009) Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia 52:1087–1091

    Article  PubMed  CAS  Google Scholar 

  • Metón I, Mediavilla D, Caseras A, Cantó E, Fernández F, Baanante IV (1999) Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr 82:223–232

    PubMed  Google Scholar 

  • Metón I, Egea M, Fernández F, Eraso MC, Baanante IV (2004) The N-terminal sequence directs import of mitochondrial alanine aminotransferase into mitochondria. FEBS Lett 566:251–254

    Article  PubMed  Google Scholar 

  • Metón I, Egea M, Anemaet IG, Fernández F, Baanante IV (2006) Sterol regulatory element binding protein-1a transactivates 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene promoter. Endocrinology 147:3446–3456

    Article  PubMed  Google Scholar 

  • Miura A, Yamagata K, Kakei M, Hatakeyama H, Takahashi N, Fukui K, Nammo T, Yoneda K, Inoue Y, Sladek FM, Magnuson MA, Kasai H, Miyagawa J, Gonzalez FJ, Shimomura I (2006) Hepatocyte nuclear factor-4alpha is essential for glucose-stimulated insulin secretion by pancreatic beta-cells. J Biol Chem 281:5246–5257

    Article  PubMed  CAS  Google Scholar 

  • Mohlke KL, Boehnke M (2005) The role of HNF4A variants in the risk of type 2 diabetes. Curr Diab Rep 5:149–156

    Article  PubMed  CAS  Google Scholar 

  • Mommsen TP, Walsh PJ, Moon TW (1985) Gluconeogenesis in hepatocytes and kidney of Atlantic salmon. Mol Physiol 8:89–100

    CAS  Google Scholar 

  • Monaci P, Nicosia A, Cortese R (1988) Two different liver-specific factors stimulate in vitro transcription from the human alpha 1-antitrypsin promoter. EMBO J 7:2075–2087

    PubMed  CAS  Google Scholar 

  • Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Physiol B Biochem Mol Biol 129:243–249

    Article  PubMed  CAS  Google Scholar 

  • Niehof M, Borlak J (2008) HNF4α and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 57:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Nishiyori A, Tashiro H, Kimura A, Akagi K, Yamamura K, Mori M, Takiguchi M (1994) Determination of tissue specificity of the enhancer by combinatorial operation of tissue-enriched transcription factors. Both HNF-4 and C/EBP beta are required for liver-specific activity of the ornithine transcarbamylase enhancer. J Biol Chem 269:1323–1331

    PubMed  CAS  Google Scholar 

  • Nitsch D, Boshart M, Schutz G (1993) Activation of the tyrosine aminotransferase gene is dependent on synergy between liver-specific and hormone-responsive elements. Proc Natl Acad Sci USA 90:5479–5483

    Article  PubMed  CAS  Google Scholar 

  • Parviz F, Matullo C, Garrison WD, Savatski L, Adamson JW, Ning G, Kaestner KH, Rossi JM, Zaret KS, Duncan SA (2003) Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet 34:292–296

    Article  PubMed  CAS  Google Scholar 

  • Salgado MC, Metón I, Egea M, Baanante IV (2004) Transcriptional regulation of glucose-6-phosphatase catalytic subunit promoter by insulin and glucose in the carnivorous fish, Sparus aurata. J Mol Endocrinol 33:783–795

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Muros MJ, García-Rejón L, García-Salguero L, De La Higuera M, Lupiáñez JA (1998) Long-term nutritional effects on the primary liver and kidney metabolism in rainbow trout. Adaptive response to starvation and a high-protein, carbohydrate-free diet on glutamate dehydrogenase and alanine aminotransferase kinetics. Int J Biochem Cell Biol 30:55–63

    Article  PubMed  Google Scholar 

  • Schiestl R, Gietz R (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346

    Article  PubMed  CAS  Google Scholar 

  • Schrem H, Klempnauer J, Borlak J (2002) Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol Rev 54:129–158

    Article  PubMed  CAS  Google Scholar 

  • Sladek FM, Seidel SD (2001) Hepatocyte nuclear factor 4 alpha. In: Burris T, Mccabe ERB (eds) Nuclear receptors and disease. Academic, London

    Google Scholar 

  • Sladek FM, Zhong WM, Lai E, Darnell JE Jr (1990) Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev 4:2353–2365

    Article  PubMed  CAS  Google Scholar 

  • Sohocki MM, Sullivan LS, Harrison WR, Sodergren EJ, Elder FFB, Weinstock G, Tanase S, Daiger SP (1997) Human glutamate pyruvate transaminase (GPT): localization to 8q24.3, cDNA and genomic sequences, and polymorphic sites. Genomics 40:247–252

    Article  PubMed  CAS  Google Scholar 

  • Stoffel M, Duncan SA (1997) The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci USA 94:13209–13214

    Article  PubMed  CAS  Google Scholar 

  • Swick RW, Barnstein PL, Stange JL (1965) The metabolism of mitochondrial proteins. I. Distribution and characterization of the isozymes of alanine aminotransferase in rat liver. J Biol Chem 240:3334–3340

    PubMed  CAS  Google Scholar 

  • Taraviras S, Monaghan AP, Schutz G, Kelsey G (1994) Characterization of the mouse HNF-4 gene and its expression during mouse embryogenesis. Mech Dev 48:67–79

    Article  PubMed  CAS  Google Scholar 

  • Thulin P, Rafter I, Stockling K, Tomkiewicz C, Norjavaara E, Aggerbeck M, Hellmold H, Ehrenborg E, Andersson U, Cotgreave I, Glinghammar B (2008) PPARalpha regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes. Toxicol Appl Pharmacol 231:1–9

    Article  PubMed  CAS  Google Scholar 

  • Viollet B, Kahn A, Raymondjean M (1997) Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4. Mol Cell Biol 17:4208–4219

    PubMed  CAS  Google Scholar 

  • Walker J, Barrett J (1991) Studies on alanine aminotransferase in nematodes. Int J Parasitol 21:377–380

    Article  PubMed  CAS  Google Scholar 

  • Wilson GL, Leiter EH (1990) Streptozotocin interactions with pancreatic beta cells and the induction of insulin-dependent diabetes. Curr Top Microbiol Immunol 156:27–54

    Article  PubMed  CAS  Google Scholar 

  • Yang R-Z, Blaileanu G, Hansen BC, Shuldiner AR, Gong D-W (2002) cDNA cloning, genomic structure, chromosomal mapping, and functional expression of a novel human alanine aminotransferase. Genomics 79:445–450

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the MCYT (Spain) BIO2006-01857 and MICINN (Spain) BIO2009-07589 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel V. Baanante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado, M.C., Metón, I., Anemaet, I.G. et al. Hepatocyte Nuclear Factor 4α Transactivates the Mitochondrial Alanine Aminotransferase Gene in the Kidney of Sparus aurata . Mar Biotechnol 14, 46–62 (2012). https://doi.org/10.1007/s10126-011-9386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9386-3

Keywords

Navigation