Skip to main content

Advertisement

Log in

Energy Budget for the Cultured, Zooxanthellate Octocoral Sinularia flexibilis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m−2 s−1) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis–irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m−2 s−1 showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m−2 s−1. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111–127%. Carbon energy equivalents allocated to the coral growth averaged 6–12% of total photosynthesis energy (mg C g¹ buoyant weight day¹) and about 0.02% of the total daily radiant energy. “Light utilization efficiency (ε)” estimated an average ε value of 75% 12 h¹ for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aceret TL, Sammarco PW, Coll JC (1995) Effects of diterpenes derived from the soft coral Sinularia flexibilis on the eggs, sperm and embryos of the scleractinian corals Montipora digitata and Acropora tenuis. Mar Biol 122:317–323

    CAS  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    CAS  Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Google Scholar 

  • Anthony KRN, Hoegh-Guldberg O (2003) Kinetics of photoacclimation in corals. Oecologia 134:23–31

    Article  PubMed  Google Scholar 

  • Bosscher H, Schlager W (1992) Computer simulation of reef growth. Sedimentology 39:503–512

    Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16(Suppl):S129–S138

    Article  Google Scholar 

  • Coll JC, Bowden BF, Tapiolas DM, Dunlap WC (1982) In situ isolation of allelochemicals released from soft corals (Coelenterata: Octocorallia): a totally submersible sampling apparatus. J Exp Mar Biol Ecol 60:293–299

    Google Scholar 

  • Cooksey KE, Cooksey B (1972) Turnover of photosynthetically fixed carbon in reef corals. Mar Biol 15:289–292

    Article  Google Scholar 

  • Crossland CJ, Barnes DJ, Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol 60:81–90

    Article  CAS  Google Scholar 

  • Davies, P.S (1977) Carbon budgets and vertical zonation of Atlantic reef corals. Proc. 3rd Int Coral Reef Symp. Miami. 1, 391–396

  • Davies PS (1980) Respiration in some Atlantic reef corals in relation to vertical distribution and growth form. Biol Bull 158:187–194

    Article  Google Scholar 

  • Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186

    Google Scholar 

  • Davies PS (1991) Effect of daylight variations on the energy budgets of shallow-water corals. Mar Biol 108:137–144

    Google Scholar 

  • Dunlap WC, Shick JM (1998) Ultraviolet radiation absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34:418–430

    Article  Google Scholar 

  • Edmunds PJ, Davies PS (1986) An energy budget for Porites porites (Scleraetinia). Mar Biol 92:339–347

    Article  Google Scholar 

  • Edmunds PJ, Davies PS (1989) An energy budget for Porites porites (Scleractinia), growing in a stressed environment. Coral Reefs 8:37–43

    Article  Google Scholar 

  • Elliot JM, Davison W (1975) Energy equivalents of oxygen consumption in animal energetics. Oecologia (Berlin) 19:195–201

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Biol Sci 34:705–709

    CAS  Google Scholar 

  • Ferrier-Pagès C, Allemand D, Gattuso JP, Jaubert J, Rassoulzadegan F (1998) Microheterotrophy in the zooxanthellate coral Stylophora pistillata: effects of light and ciliate density. Limnol Oceanogr 43(7):1639–1648

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg O, Hinde R (1986) Respiration and the translocation of newly fixed carbon by zooxanthellae in Pteraeolidia ianthina. Proc R Soc Lond B Biol Sci 228(1253):493–509

    Article  Google Scholar 

  • Houlbrèque F, Tambutté E, Richard C, Ferrier-Pagès C (2004) Importance of a microdiet for scleractinian corals. Mar Ecol Prog Ser 282:151–160

    Article  Google Scholar 

  • Khalesi MK (2008) Ex situ cultivation of the soft coral Sinularia flexibilis for biotechnological exploitation. Dissertation, Wageningen University, Wageningen, the Netherlands

  • Khalesi MK, Beeftink HH, Wijffels RH (2009) Light dependency of growth and secondary metabolite production in the captive zooxanthellate soft coral Sinularia flexibilis. Mar Biotechnol 11:488–494

    Article  PubMed  CAS  Google Scholar 

  • Kishino M, Okami N, Takahashi M, Ichimura S (1986) Light utilization efficiency and quantum yield of phytoplankton in a thermally stratified sea. Limnol Oceanogr 31:557–566

    Article  Google Scholar 

  • Klumpp DW, Griffiths CL (1994) Contribution of phototrophic and heterotrophic nutrition to the metabolic and growth requirement of four species of giant clam (Tridacnidae). Mar Ecol Progr Ser 115:103–115

    Google Scholar 

  • Leletkin VA (2000) The energy budget of coral polyps. Russ J Mar Biol 26:389–398

    Article  Google Scholar 

  • Lesser MP, Mazel C, Phinney D, Yentsch CS (2000) Light absorption and utilization by colonies of congeneric hermatypic corals Montastrea faveolata and Montastrea cavernosa. Limnol Oceanogr 45:76–86

    Google Scholar 

  • Lewis DH, Smith DC (1971) The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals: 1. Movement of photosynthetic products between the symbionts. Proc R Soc Loud Ser B 178:111–129

    Article  CAS  Google Scholar 

  • Maida M, Sammarco PW, Coll JC (2001) Effects of soft corals on scleractinian coral recruitment. II: allelopathy, spat survivorship and reef community structure. Mar Ecol 22:397–414

    Article  Google Scholar 

  • Markager S (1993) Light absorption and quantum yield for growth in five species of marine macroalgae. J Phycol 29:54–63

    Article  Google Scholar 

  • McCloskey LR, Muscatine L, Wilkerson FR (1994) Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Mar Biol 119:13–22

    Article  Google Scholar 

  • Michalek-Wagner K, Bowden BF (1997) A natural algacide from soft coral Sinularia flexibilis (Coelenterata, Octocorallia, Alcyonacea). J Chem Ecol 23:259–273

    Article  Google Scholar 

  • Morel A, Smith RC (1974) Relation between total quanta and total energy for aquatic photosynthesis. Limnol Oceanogr 19:591–600

    Article  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light and shade-adopted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B 222:181–202

    Article  CAS  Google Scholar 

  • Muscatine L, McCloskey LR, Loya Y (1985) A comparison of the growth rates of zooxanthellae and animal tissue in the Red Sea coral Stylophora pistillata. Proc 5th Intern Coral Reef Symp 6: 119–123

    Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world 25. Coral Reefs 4. Elsevier, Amsterdam, pp 75–86

    Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Prog Ser 300:79–89

    Article  Google Scholar 

  • Palardy JE, Rodrigues LJ, Grottoli AG (2008) The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Biol Ecol 367:180–188

    Article  CAS  Google Scholar 

  • Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD (2005) Coral photobiology studied with a new imaging pulse amplitude modulated fluorometer. J Phycol 41:335–342

    Article  Google Scholar 

  • Reynaud S, Ferrier-Pages C, Sambrotto R, Julliet-Leclerc A, Jaubert J, Gattuso JP (2002) Effect of feeding on the carbon and oxygen isotopic composition in the tissues and skeleton of the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser 238:81–89

    Article  Google Scholar 

  • Riddle D (2007) How much light?! analyses of selected shallow water invertebrates’ light requirements. Advanced Aquarist’s Online Magazine VI-3: http://www.advancedaquarist.com/2007/3/aafeature1

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, AKiefer D, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670

    Article  CAS  Google Scholar 

  • Sammarco PW, La Barre S, Coll JC (1987) Defensive strategies of soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef III. The relationship between ichthyotoxicity and morphology. Oecologia 74:93–101

    Google Scholar 

  • Sebens KP, DeRiemer K (1977) Diel cycles of expansion and contraction in coral reef Anthozoans. Mar Biol 43:247–256

    Article  Google Scholar 

  • Sebens KP (1984) Water flow and coral colony size: Interhabitat comparisons of the octocoral Alcyonium siderium. Proc Natl Acad Sci USA 81:5473–5477

    Google Scholar 

  • Steen RG, Muscatine L (1984) Daily budgets of photosynthetically fixed carbon in symbiotic zoanthids. Biol Bull 167:477–487

    Article  CAS  Google Scholar 

  • Szmant-Froelich A, Pilson ME (1984) Effects of feeding frequency and symbiosis with zooxanthellae on nitrogen metabolism and respiration of the coral Astrangia danae. Mar Biol 81:153–162

    Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, Woesik R van (2001b) Photoacclimation of the hermatypic coral Stylophora pistillata while subjected to either starvation or food provisioning. J Exp Mar Biol Ecol 257:163–181

    Google Scholar 

  • Vermeij MJA, Bak RPM (2002) How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar Ecol Prog Ser 233:105–116

    Article  Google Scholar 

  • Verde EA, McCloskey LR (2002) A comparative analysis of the photobiology of zooxanthellae and zoochlorellae symbiotic with the temperate clonal anemone Anthopleura elegantissima (Brandt). II. Effect of light intensity. Mar Biol 141:225–239

    Google Scholar 

  • Wang JT, Douglas AE (1998) Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis. J Exp Biol 201:2445–2453

    Google Scholar 

  • Widdig A, Schlichter D (2001) Phytoplankton: a significant trophic source for soft corals? Helgol Mar Res 55:198–211

    Article  Google Scholar 

  • Yap HT, Alvarez RM, Custodio HM, Dizon RM (1998) Physiological and ecological aspects of coral transplantation. J Exp Mar Biol Ecol 229:69–84

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the government of the I.R. of Iran. We also thank The Bergers’ Zoo, Arnhem, The Netherlands for supplying the coral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad K. Khalesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalesi, M.K., Beeftink, H.H. & Wijffels, R.H. Energy Budget for the Cultured, Zooxanthellate Octocoral Sinularia flexibilis . Mar Biotechnol 13, 1092–1098 (2011). https://doi.org/10.1007/s10126-011-9373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9373-8

Keywords

Navigation