Skip to main content

Advertisement

Log in

Bioactivity, Chemical Profiling, and 16S rRNA-Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

One hundred one antibacterial Pseudoalteromonas strains that inhibited growth of a Vibrio anguillarum test strain were collected on a global research cruise (Galathea 3), and 51 of the strains repeatedly demonstrated antibacterial activity. Here, we profile secondary metabolites of these strains to determine if particular compounds serve as strain or species markers and to determine if the secondary metabolite profile of one strain represents the bioactivity of the entire species. 16S rRNA gene similarity divided the strains into two primary groups: One group (51 strains) consisted of bacteria which retained antibacterial activity, 48 of which were pigmented, and another group (50 strains) of bacteria which lost antibacterial activity upon sub-culturing, two of which were pigmented. The group that retained antibacterial activity consisted of six clusters in which strains were identified as Pseudoalteromonas luteoviolacea, Pseudoalteromonas aurantia, Pseudoalteromonas phenolica, Pseudoalteromonas ruthenica, Pseudoalteromonas rubra, and Pseudoalteromonas piscicida. HPLC-UV/VIS analyses identified key peaks, such as violacein in P. luteoviolacea. Some compounds, such as a novel bromoalterochromide, were detected in several species. HPLC-UV/VIS detected systematic intra-species differences for some groups, and testing several strains of a species was required to determine these differences. The majority of non-antibacterial, non-pigmented strains were identified as Pseudoalteromonas agarivorans, and HPLC-UV/VIS did not further differentiate this group. Pseudoalteromonas retaining antibacterial were more likely to originate from biotic or abiotic surfaces in contrast to planktonic strains. Hence, the pigmented, antibacterial Pseudoalteromonas have a niche specificity, and sampling from marine biofilm environments is a strategy for isolating novel marine bacteria that produce antibacterial compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong E, Yan LM, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40

    Article  Google Scholar 

  • Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37:2162–2178

    Article  Google Scholar 

  • Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5:220–241

    Article  PubMed  CAS  Google Scholar 

  • Boyd KG, Adams DR, Burgess JG (1999) Antibacterial and repellent activities of marine bacteria associated with algal surfaces. Biofouling 14:227–236

    Article  Google Scholar 

  • Burgess JG, Jordan EM, Bregu M, Mearns-Spragg A, Boyd KG (1999) Microbial antagonism: a neglected avenue of natural products research. J Biotechnol 70:27–32

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    PubMed  CAS  Google Scholar 

  • Doull JL, Vining LC (1990) Nutritional control of actinorhodin production by Streptomyces coelicolor A3(2)—suppressive effects of nitrogen and phosphate. Appl Microbiol Biotechnol 32:449–454

    Article  PubMed  CAS  Google Scholar 

  • Egan S, Holmström C, Kjelleberg S (2001) Pseudoalteromonas ulvae sp nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol 51:1499–1504

    PubMed  CAS  Google Scholar 

  • Egan S, James S, Holmström C, Kjelleberg S (2002) Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environ Microbiol 4:433–442

    Article  PubMed  CAS  Google Scholar 

  • Egan S, Thomas T, Kjelleberg S (2008) Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 11:219–225

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1958) Statistical methods for research workers. Hafner, New York

    Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Evol Microbiol 42:166

    CAS  Google Scholar 

  • Franks A, Egan S, Holmstrom C, James S, Lappin-Scott H, Kjelleberg S (2006) Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl Environ Microbiol 72:6079–6087

    Article  PubMed  CAS  Google Scholar 

  • Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    Article  PubMed  CAS  Google Scholar 

  • Gauthier MJ (1976a) Morphological, physiological, and biochemical characteristics of some violet-pigmented bacteria isolated from seawater. Can J Microbiol 22:138–149

    Article  PubMed  CAS  Google Scholar 

  • Gauthier MJ (1976b) Alteromonas rubra sp. nov., a new marine antibiotic-producing bacterium. Int J Syst Bacteriol 26:459–466

    Article  Google Scholar 

  • Gauthier MJ, Flatau GN (1976) Antibacterial activity of marine violet-pigmented Alteromonas with special reference to the production of brominated compounds. Can J Microbiol 22:1612–1619

    Article  PubMed  CAS  Google Scholar 

  • Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1

    Article  PubMed  CAS  Google Scholar 

  • Gram L, Melchiorsen J, Bruhn JB (2010) Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms. Mar Biotechnol 12:439–451

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696

    Article  PubMed  Google Scholar 

  • Hayashida-Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y (2008) Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J Appl Microbiol 105:1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Hjelm M, Bergh Ø, Riaza A, Nielsen J, Melchiorsen J, Jensen S, Duncan H, Ahrens P, Birkbeck H, Gram L (2004) Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst Appl Microbiol 27:360–371

    Article  PubMed  Google Scholar 

  • Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    Article  PubMed  Google Scholar 

  • Holmström C, James S, Egan S, Kjelleberg S (1996) Inhibition of common fouling organisms by marine bacterial isolates with special reference to the role of pigmented bacteria. Biofouling 10:251–259

    Article  Google Scholar 

  • Holmström C, Egan S, Franks A, McCloy S, Kjelleberg S (2002) Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol 41:47–58

    Article  PubMed  Google Scholar 

  • Hornemann U, Hurley LH, Speedie MK, Floss HG (1971) Biosynthesis of indolmycin. J Am Chem Soc 93:3028–3035

    Article  PubMed  CAS  Google Scholar 

  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, Francois JM, Baise E, Feller G, Gerday C (2001) Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Hurdle JG, O'Neill AJ, Chopra I (2004) Anti-staphylococcal activity of indolmycin, a potential topical agent for control of staphylococcal infections. J Antimicrob Chemothe 54:549–552

    Article  CAS  Google Scholar 

  • Isnansetyo A, Kamei Y (2003) MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:480–488

    Article  PubMed  CAS  Google Scholar 

  • Ivanova EP, Flavier S, Christen R (2004) Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788

    Article  PubMed  CAS  Google Scholar 

  • James SG, Holmström C, Kjelleberg S (1996) Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl Environ Microbiol 62:2783–2788

    PubMed  CAS  Google Scholar 

  • Jensen PR, Mafnas C (2006) Biogeography of the marine actinomycete Salinispora. Environ Microbiol 8:1881–1888

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Boyd KG, Mearns-Spragg A, Adams DR, Wright PC, Burgess JG (2000) Two diketopiperazines and one halogenated phenol from cultures of the marine bacterium, Pseudoalteromonas luteoviolacea. Nat Prod Let 14:435–440

    Article  CAS  Google Scholar 

  • Kalesperis GS, Prahlad KV, Lynch DL (1975) Toxigenic studies with the antibiotic pigments from Serratia marcescens. Can J Microbiol 21:213

    Article  PubMed  CAS  Google Scholar 

  • Kalinovskaya NI, Ivanova EP, Alexeeva YV, Gorshkova NM, Kuznetsova TA, Dmitrenok AS, Nicolau DV (2004) Low-molecular-weight, biologically active compounds from marine Pseudoalteromonas species. Curr Microbiol 48:441–446

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Laatsch H, Pudleiner H (1989) Marine bakterien, I: synthese von pentabrompseudilin, einem phenylpyrrol aus Alteromonas luteoviolaceus. Liebigs Ann Chem 1989:863–881

    Article  Google Scholar 

  • Lichstein HC, Vandesand VF (1945) Violacein, an antibiotic pigment produced by Chromobacterium violaceum. J Infect Dis 76:47–51

    Article  CAS  Google Scholar 

  • Lovell FM (1966) Structure of a bromine-rich marine antibiotic. J Am Chem Soc 88:4510–4511

    Article  Google Scholar 

  • Månsson M, Phipps RK, Gram L, Munro MH, Larsen TO, Nielsen KF (2010) Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery. J Nat Prod 73:1126–1132

    Article  PubMed  Google Scholar 

  • Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S, Steinberg P, Kjelleberg S (2008) Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE 3:e2744

    Article  PubMed  Google Scholar 

  • McCarthy SA, Johnson RM, Kakimoto D (1994) Characterization of an antibiotic produced by Alteromonas luteoviolacea Gauthier 1982, 85 isolated from Kinko Bay, Japan. J Appl Microbiol 77:426–432

    Article  CAS  Google Scholar 

  • Mearns-Spragg A, Bregu M, Boyd KG, Burgess JG (1998) Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. Lett Appl Microbiol 27:142–146

    Article  PubMed  CAS  Google Scholar 

  • Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KF, Sumarah MW, Frisvad JC, Miller JD (2006) Production of metabolites from the Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763

    Article  PubMed  CAS  Google Scholar 

  • Penesyan A, Marshall-Jones Z, Holmstrom C, Kjelleberg S, Egan S (2009) Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol Ecol 69:113–124

    Article  PubMed  CAS  Google Scholar 

  • Rao D, Webb JS, Kjelleberg S (2005) Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 71:1729–1736

    Article  PubMed  CAS  Google Scholar 

  • Sanchez S, Chavez A, Forero A, Garcia-Huante Y, Romero A, Sanchez M, Rocha D, Sanchez B, Avalos M, Guzman-Trampe S, Rodriguez-Sanoja R, Langley E, Ruiz B (2010) Carbon source regulation of antibiotic production. J Antibiot 63:442–459

    Article  PubMed  CAS  Google Scholar 

  • Simmons TL, Coates RC, Clark BR, Engene N, Gonzalez D, Esquenazi E, Dorrestein PC, Gerwick WH (2008) Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. P Natl A Sci USA 105:4587–4594

    Article  CAS  Google Scholar 

  • Skov MN, Pedersen K, Larsen JL (1995) Comparison of pulsed-field gel electrophoresis, ribotyping, and plasmid profiling for typing of Vibrio anguillarum serovar O1. Appl Environ Microbiol 61:1540–1545

    PubMed  CAS  Google Scholar 

  • Speitling M, Smetanina OE, Kuznetsova TA, Laatsch H (2007) Marine bacteria. XXXV. Bromoalterochromides A and A′, unprecedented chromopeptides from a marine Pseudoalteromonas maricaloris strain KMM 636. J Antibiot 60:36–42

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kampfer P, Maiden MCJ, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Sudek S, Lopanik NB, Waggoner LE, Hildebrand M, Anderson C, Liu H, Patel A, Sherman DH, Haygood MG (2006) Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J Nat Prod 70:67–74

    Article  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596

    Article  PubMed  CAS  Google Scholar 

  • Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, Gerday C, Haser R, Receveur-Brechot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348:1211–1224

    Article  PubMed  CAS  Google Scholar 

  • Werner RG (1980) Uptake of indolmycin in gram-positive bacteria. Antimicrob Agents Chemother 18:858

    PubMed  CAS  Google Scholar 

  • Wietz M, Schramm A, Jørgensen B, Gram L (2010) Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat Microb Ecol 61:179–189

    Google Scholar 

  • Wratten SJ, Wolfe MS, Andersen RJ, Faulkner DJ (1977) Antibiotic metabolites from a marine pseudomonad. Antimicrob Agents Chemother 11:411–414

    PubMed  CAS  Google Scholar 

  • Zheng L, Yan XJ, Han XT, Chen HM, Lin W, Lee FSC, Wang XR (2006) Identification of norharman as the cytotoxic compound produced by the sponge (Hymeniacidon perleve)-associated marine bacterium Pseudoalteromonas piscicida and its apoptotic effect on cancer cells. Biotechnol Appl Biochem 44:135–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Jesper B. Bruhn for valuable input during the early phase of this study. This study was supported by the Programme Commission on Health, Food and Welfare under the Danish Council for Strategic Research. The present work was carried out as part of the Galathea 3 expedition under the auspices of the Danish Expedition Foundation. This is Galathea 3 contribution no. p73.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaj G. Vynne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vynne, N.G., Månsson, M., Nielsen, K.F. et al. Bioactivity, Chemical Profiling, and 16S rRNA-Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise. Mar Biotechnol 13, 1062–1073 (2011). https://doi.org/10.1007/s10126-011-9369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9369-4

Keywords

Navigation