Skip to main content
Log in

Characterization of a Non-fibrillar-Related Collagen in the Mollusc Haliotis tuberculata and its Biological Activity on Human Dermal Fibroblasts

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In invertebrates, members of the collagen family have been found in various phyla. Surprisingly, in mollusc, little is known about such molecules. In this study, we characterize the full-length abalone type IV collagen and we analysed its biological effects on human fibroblast in order to gain insights about this molecule in molluscs and particularly clues about its roles. We screened a cDNA library of Haliotis tuberculata hemocytes. The expression pattern of the transcript is determined using real-time polymerase chain reaction and in situ hybridization. The close identity between α1(IV) C-terminal domain and the vertebrate homologue led us to produce, purify and test in vitro a recombinant protein corresponding to this region using human dermal fibroblasts cell culture. The biological effects were evaluated on proliferation and on differentiation. We found that the 5,334-bp open reading frame transcript encodes a protein of 1,777 amino acids, including an interrupted 1,502-residue collagenous domain and a 232-residue C-terminal non-collagenous domain. The expression pattern of this transcript is mainly found in the mantle and hemocytes. The recombinant protein corresponding α1(IV) C-terminal domain increased fibroblast proliferation by 69% and doubled collagen synthesis produced in primary cultures. This work provides the first complete primary structure of a mollusc non-fibrillar collagen chain and the biological effects of its C-terminal domain on human cells. In this study, we prove that the NC1 domain from a molluscan collagen can improve human fibroblast proliferation as well as differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BM:

Basement membranes

ECM:

Extracellular matrix

NC1:

Non-collagenous domain 1

NC1 FL:

Non-collagenous domain 1 full length

References

  • Acosta-Salmon H, Southgate PC (2006) Wound healing after excision of mantle tissue from the Akoya pearl oyster, Pinctada fucata. Comp Biochem Physiol A Mol Integr Physiol 143:264–268

    Article  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Blumberg B, MacKrell AJ, Fessler JH (1988) Drosophila basement membrane procollagen alpha 1(IV). II. Complete cDNA sequence, genomic structure, and general implications for supramolecular assemblies. J Biol Chem 263:18328–18337

    PubMed  CAS  Google Scholar 

  • Boute N, Exposito JY, Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshizato K, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A refined and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Briggaman RA, Dalldorf FG, Wheeler CE (1971) Formation and origin of basal lamina and anchoring fibrils in adult human skin. J Cell Biol 51:384–395

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, Volk R, Zamborsky ED, Herman S, Sarkar PK, Ericksen MB, Dhanabal M, Simons M, Post M, Kufe DW, Weichselbaum RR, Sukhatme VP, Kalluri R (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60:2520–2526

    PubMed  CAS  Google Scholar 

  • Corbetta S, Bairati A, Vitellaro Zuccarello L (2002) Immunohistochemical study of subepidermal connective of molluscan integument. Eur J Histochem 46:259–272

    PubMed  CAS  Google Scholar 

  • Davis GE, Bayless KJ, Davis MJ, Meininger GA (2000) Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J Pathol 156:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Dedhar S, Ruoslahti E, Pierschbacher MD (1987) A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. J Cell Biol 104:585–593

    Article  PubMed  CAS  Google Scholar 

  • Des Voignes DM, Sparks AK (1968) The process of wound healing in the pacific oyster, Crassostrea gigas. J Invertebr Pathol 12:53–65

    Article  Google Scholar 

  • Eikesdal HP, Sugimoto H, Birrane G, Maeshima Y, Cooke VG, Kieran M, Kalluri R (2008) Identification of amino acids essential for the antiangiogenic activity of tumstatin and its use in combination antitumor activity. Proc Natl Acad Sci USA 105:15040–15045

    Article  PubMed  CAS  Google Scholar 

  • El-Ghalbzouri A, van den Bogaerdt AJ, Kempenaar J, Ponec M (2004) Human adipose tissue-derived cells delay re-epithelialization in comparison with skin fibroblasts in organotypic skin culture. Brit J Dermatol 150:444–454

    Article  CAS  Google Scholar 

  • Exposito JY, D’Alessio M, Di Liberto M, Ramirez F (1993) Complete primary structure of a sea urchin type IV collagen α chain and analysis of the 5′ end of its gene. J Biol Chem 268:5249–5254

    PubMed  CAS  Google Scholar 

  • Farcy E, Serpentini A, Fiévet B, Lebel JM (2007) Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: transcriptional induction in response to thermal stress in hemocyte primary culture. Comp Biochem Physiol B Biochem Mol Biol 146:540–550

    Article  PubMed  Google Scholar 

  • Fawzi A, Robinet A, Monboisse JC, Ziaie Z, Kefalides NA, Bellon G (2000) A peptide of the alpha 3(IV) chain of type IV collagen modulates stimulated neutrophil function via activation of cAMP-dependent protein kinase and Ser/Thr protein phosphatise. Cell Signal 12:327–335

    Article  PubMed  CAS  Google Scholar 

  • Fowler SJ, Jose S, Zhang X, Deutzmann R, Sarras MP, Boot-Handford RP (2000) Characterization of hydra type IV collagen. Type IV collagen is essential for head regeneration and its expression is up-regulated upon exposure to glucose. J Biol Chem 275:39589–39599

    Article  PubMed  CAS  Google Scholar 

  • Franchini A, Ottaviani E (2000) Repair of molluscan tissue injury: role of PDGF and TGF-β. Tissue Cell 32:312–321

    Article  PubMed  CAS  Google Scholar 

  • Ghayor C, Herrouin JF, Chadjichristos C, Ala-Kokko L, Takigawa M, Pujol JP, Galéra P (2000) Regulation of human COL2A1 gene expression in chondrocytes. Identification of C-Krox-responsive elements and modulation by phenotype alteration. J Biol Chem 275:27421–27438

    PubMed  CAS  Google Scholar 

  • Glanville RW, Qian RQ, Siebold B, Risteli J, Kuhn K (1985) Amino acid sequence of the N-terminal aggregation and cross-linking region (7S domain) of the alpha 1 (IV) chain of human basement membrane collagen. Eur J Biochem 152:213–219

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Kramer J (1989) The two Caenorhabditis elegans basement membrane (type IV) collagen genes are located on separate chromosomes. J Biol Chem 264:17574–17582

    PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamano Y, Kalluri R (2005) Tumstatin, the NC1 domain of α3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth. Biochem Biophys Res Commun 333:292–298

    Article  PubMed  CAS  Google Scholar 

  • Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601

    Article  PubMed  CAS  Google Scholar 

  • Han J, Ohno N, Pasco S, Monboisse JC, Borel JP, Kefalides NA (1997) A cell binding domain from the alpha3 chain of type IV collagen inhibits proliferation of melanoma cells. J Biol Chem 272:20395–20401

    Article  PubMed  CAS  Google Scholar 

  • Hostikka SL, Tryggvason K (1988) The complete primary structure of the alpha 2 chain of human type IV collagen and comparison with the alpha 1(IV) chain. J Biol Chem 263:19488–19493

    PubMed  CAS  Google Scholar 

  • Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A, Maeshima Y, Mier JW, Sukhatme VP, Kalluri R (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Khün K (1994) Basement membrane (type IV) collagen. Matrix Biology 14:439–445

    Article  Google Scholar 

  • Knibiehler B, Mirre C, Cecchini JP, Le Parco Y (1987) Hemocytes accumulate collagen transcripts during Drosophila melanogaster metamorphosis. Dev Genes Evol 196:243–247

    Google Scholar 

  • Kypriotou M, Beauchef G, Chadjichristos C, Widom R, Renard E, Jimenez SA, Korn J, Maquart FX, Oddos T, von Stetten O, Pujol JP, Galéra P (2007) Human collagen Krox up-regulates type I collagen expression in normal and scleroderma fibroblasts through interaction with Sp1 and Sp3 transcription factors. J Biol Chem 282:32000–32014

    Article  PubMed  CAS  Google Scholar 

  • Maeshima Y, Colorado PC, Torre A, Holthaus KA, Grunkemeyer JA, Ericksen MB, Hopfer H, Xiao Y, Stillman IE, Kalluri R (2000) Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem 275:21340–21348

    Article  PubMed  CAS  Google Scholar 

  • Maeshima Y, Yerramalla UL, Dhanabal M, Holthaus KA, Barbashov S, Kharbanda S, Reimer C, Manfredi M, Dickerson WM, Kalluri R (2001) Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J Biol Chem 276:31959–31968

    Article  PubMed  CAS  Google Scholar 

  • Maquart FX, Siméon A, Pasco S, Monboisse JC (1999) Regulation of cell activity by the extracellular matrix: the concept of matrikines. J Soc Biol 193:423–428

    PubMed  CAS  Google Scholar 

  • Maquart FX, Pasco S, Ramont L, Hornebeck W, Monboisse JC (2004) An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity. Implication in tumor invasion. Crit Rev Oncol Hematol 49:199–202

    Article  PubMed  Google Scholar 

  • Mundel TM, Kalluri R (2007) Type IV collagen-derived angiogenesis inhibitors. Microvasc Res 74:85–89

    Article  PubMed  CAS  Google Scholar 

  • Netzer KO, Suzuki K, Itoh Y, Hudson BG, Khalifah RG (1998) Comparative analysis of the non-collagenous NC1 domain of type IV collagen: identification of structural features important for assembly, function, and pathogenesis. Prot Sci 7:1340–1351

    Article  CAS  Google Scholar 

  • Ortega N, Werb Z (2002) New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 115:4201–4214

    Article  PubMed  CAS  Google Scholar 

  • Pasco S, Brassart B, Ramont L, Maquart FX, Monboisse JC (2005) Control of melanoma cell invasion by type IV collagen. Cancer Detect Prev 29:260–266

    Article  PubMed  CAS  Google Scholar 

  • Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Models Mech 1:144–154

    Article  Google Scholar 

  • Paulsson M (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27:93–127

    Article  PubMed  CAS  Google Scholar 

  • Peterkofsky B, Diegelmann R (1971) Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochem 10:988–993

    Article  CAS  Google Scholar 

  • Petitclerc E, Boutaud A, Prestayko A, Xu J, Sado V, Ninomiya Y, Sarras MP, Hudson BG, Brooks PC (2000) New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 275:8051–8061

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Ann Rev Biochem 64:403–434

    Article  PubMed  CAS  Google Scholar 

  • Rebustini IT, Myers C, Lassiter KS, Surmak A, Szabova L, Holmbeck K, Pedchenko V, Hudson BG, Hoffman MP (2009) MT2-MMP-dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis. Dev Cell 17:482–493

    Article  PubMed  CAS  Google Scholar 

  • Risteli J, Bächinger HP, Engel J, Furthmayr H, Timpl R (1980) 7-S collagen: characterization of an unusual basement membrane structure. Eur J Biochem 108:239–250

    Article  PubMed  CAS  Google Scholar 

  • Serpentini A, Ghayor C, Poncet JM, Hebert V, Galera P, Pujol JP, Boucaud-Camou E, Lebel JM (2000) Collagen study and regulation of the de novo synthesis by IGF-I in hemocytes from the gastropod mollusc, Haliotis tuberculata. J Exp Zool 287:275–284

    Article  PubMed  CAS  Google Scholar 

  • Serpentini A, Poncet JM, Boucaud-Camou E, Lebel JM (2002) Etude de la synthèse globale de collagène produit par les hémocytes d’un Mollusque nacrier, l’ormeau Haliotis tuberculata. Mise en évidence d’une variation annuelle. Haliotis 31:45–52

    Google Scholar 

  • Simon-Assmann P, Bouziges F, Freund JN, Perrin-Schmitt F, Kedinger M (1990) Type IV collagen mRNA accumulates in the mesenchymal compartment at early stages of murine developing intestine. J Cell Biol 110:849–857

    Article  PubMed  CAS  Google Scholar 

  • Smola H, Stark HJ, Thiekötter G, Mirancea N, Krieg T, Fusenig NE (1998) Dynamics of basement membrane formation by keratinocyte–fibroblast interactions in organotypic skin culture. Exp Cell Res 239:399–410

    Article  PubMed  CAS  Google Scholar 

  • Tichopad A, Didier A, Pfaffl MW (2004) Inhibition of real-time RT-PCR quantification due to tissue-specific contaminants. Mol Cell Probes 18:45–50

    Article  PubMed  CAS  Google Scholar 

  • Timpl R, Dziadek M (1986) Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol 29:1–112

    PubMed  CAS  Google Scholar 

  • Timpl R, Oberbäumer I, von der Mark H, Bode W, Wick G, Weber S, Engel J (1985) Structure and biology of the globular domain of basement membrane type IV collagen. Ann NY Acad Sci 460:58–72

    Article  PubMed  CAS  Google Scholar 

  • Tran K, Lamb P, Deng JS (2005) Matrikines and matricryptins: implications for cutaneous cancers and skin repair. J Dermatol Sci 40:11–20

    Article  PubMed  CAS  Google Scholar 

  • Vuorio E, de Crombrugghe B (1990) The family of collagen genes. Ann Rev Biochem 59:837–872

    Article  PubMed  CAS  Google Scholar 

  • Wood W, Faria C, Jacinto A (2006) Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J Cell Biol 173:405–416

    Article  PubMed  CAS  Google Scholar 

  • Yasothornsrikul S, Davis WJ, Cramer G, Kimbrell DA, Dearolf CR (1997) Viking: identification and characterization of a second type IV collagen in Drosophila. Gene 198:17–25

    Article  PubMed  CAS  Google Scholar 

  • Yoneda C, Ahsan MN, Nakaya M, Matsubara Y, Ebihara T, Irie S, Uno Y, Hatae K, Watabe S (2000) Abalone collagens: immunological properties and seasonal changes of their mRNA levels. Comp Biochem Physiol B Biochem Mol Biol 126:59–68

    Article  PubMed  CAS  Google Scholar 

  • Zhang V, Hudson BG, Sarras MP Jr (1994) Hydra cell aggregate development is blocked by selective fragments of fibronectin and type IV collagen. Dev Biol 164:10–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of C. Fleury was financially supported by a CIFRE fellowship from the BiotechMarine company (Zone Industrielle—BP65, 22260 Pontrieux, France, www.biotechmarine.com). The authors would like to thank Dr. Isabella Vlisidou and Miss Zoë Freeman (university of Bath) for helpful comments and/or improvement of the English language. The authors thank the technical staff of the CREC (Centre de Recherche en Environnement Côtier-Luc/Mer) for their assistance in animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Lebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleury, C., Serpentini, A., Kypriotou, M. et al. Characterization of a Non-fibrillar-Related Collagen in the Mollusc Haliotis tuberculata and its Biological Activity on Human Dermal Fibroblasts. Mar Biotechnol 13, 1003–1016 (2011). https://doi.org/10.1007/s10126-011-9364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9364-9

Keywords

Navigation