Marine Biotechnology

, Volume 13, Issue 5, pp 971–980 | Cite as

A Functional Study of Transforming Growth Factor-Beta from the Gonad of Pacific Oyster Crassostrea gigas

  • Charlotte CorporeauEmail author
  • Agnès Groisillier
  • Alexandra Jeudy
  • Tristan Barbeyron
  • Elodie Fleury
  • Caroline Fabioux
  • Mirjam Czjzek
  • Arnaud Huvet
Original Article


The transforming growth factor (TGF)-β superfamily is a group of important growth factors involved in multiple processes such as differentiation, cell proliferation, apoptosis and cellular growth. In the Pacific oyster Crassostrea gigas, the oyster gonadal (og) TGF-β gene was recently characterized through genome-wide expression profiling of oyster lines selected to be resistant or susceptible to summer mortality. Og TGF-β appeared specifically expressed in the gonad to reach a maximum when gonads are fully mature, which singularly contrasts with the pleiotropic roles commonly ascribed to most TGF-β family members. The function of og TGF-β protein in oysters is unknown, and defining its role remains challenging. In this study, we develop a rapid bacterial production system to obtain recombinant og TGF-β protein, and we demonstrate that og TGF-β is processed by furin to a mature form of the protein. This mature form can be detected in vivo in the gonad. Functional inhibition of mature og TGF-β in the gonad was conducted by inactivation of the protein using injection of antibodies. We show that inhibition of og TGF-β function tends to reduce gonadic area. We conclude that mature og TGF-β probably functions as an activator of germ cells development in oyster.


Transforming growth factor-β Bacterial expression In vivo antibody inhibition Reproduction Crassostrea gigas Marine bivalve 



The present research project was supported by “Europole Mer” (; project “OxyGenes”) and by ANR (project “Gametogenes” ANR-08-GENM-041). The authors are grateful for the financial support from the ‘Marine Genomics Europe’ network of excellence (European Commission contract number GOCE-CT-2004-505403). E. Fleury was funded by Ifremer and a Région Basse-Normandie doctoral grant. We thank all the staff of the Argenton experimental hatchery for conditioning oysters. The authors are indebted to J.Y. Daniel, V. Quilien and C. Quéré for advice and technical assistance. We thank J. Moal for her comments on the manuscript and H. McCombie for editing the English language.


  1. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  2. Biswas S, Criswell TL, Wang SE, Arteaga CL (2006) Inhibition of transforming growth factor-beta signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin Cancer Res 12:4142–4146PubMedCrossRefGoogle Scholar
  3. Blanchette F, Day R, Dong W, Laprise MH, Dubois CM (1997) TGF-β1 regulates gene expression of its own converting enzyme furin. J Clin Invest 99:1974–1983PubMedCrossRefGoogle Scholar
  4. Calp MK, Matsumoto JA, Van der Kraak G (2003) Activin and transforming growth factor-β as local regulators of ovarian steroidogenesis in the goldfish. Gen Comp Endocrinol 132:142–150PubMedCrossRefGoogle Scholar
  5. Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev 23:787–823PubMedCrossRefGoogle Scholar
  6. Clelland E, Kohli G, Campbell RK, Sharma S, Shimasaki S, Peng C (2006) Bone-morphogenetic protein-15 in the zebrafish ovary: complementary deoxyribonucleic acid cloning, genomic organization, tissue distribution, and role in oocyte maturation. Endocrinology 147(1):201–209PubMedCrossRefGoogle Scholar
  7. Cui Y, Jean F, Thomas G, Christian JL (1998) BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J 17:4735–4743PubMedCrossRefGoogle Scholar
  8. Dumont N, Arteaga CL (2003) Targeting the TGF-β signalling network in human neoplasia. Cancer Cell 3:531–536PubMedCrossRefGoogle Scholar
  9. Fabioux C, Pouvreau S, Le Roux F, Huvet A (2004) The oyster vasa-like gene: a specific marker of the germ-line in Crassostrea gigas. Biochem Biophys Res Commun 315:897–904PubMedCrossRefGoogle Scholar
  10. Fabioux C, Huvet A, Le Souchu P, Le Pennec M, Pouvreau S (2005) Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture 250:458–470CrossRefGoogle Scholar
  11. Fabioux C, Corporeau C, Quillien V, Favrel P, Huvet A (2009) In vivo RNA interference in oyster-vasa silencing inhibits germ cell development. FEBS J 276:2566–2573PubMedCrossRefGoogle Scholar
  12. Fleury E, Fabioux C, Lelong C, Favrel P, Huvet A (2008) Characterization of a gonad-specific transforming growth factor-β superfamily member differentially expressed during the reproductive cycle of the oyster Crassostrea gigas. Gene 410:187–196PubMedCrossRefGoogle Scholar
  13. Fleury E, Moal J, Boulo V, Daniel JY, Mazurais D, Hénaut A, Corporeau C, Boudry P, Favrel P, Huvet A (2010) Microarray-based identification of gonad transcripts differentially expressed between lines of Pacific oyster selected to be resistant or susceptible to summer mortality. Mar Biotechnol 12:326–339PubMedCrossRefGoogle Scholar
  14. Ge W (2005) Intrafollicular paracrine communication in the zebrafish ovary: the state of the art of an emerging model for the study of vertebrate folliculogenesis. Mol Cell Endocrinol 237:1–10PubMedCrossRefGoogle Scholar
  15. Gilchrist RB, Ritter LJ, Cranfield M, Jeffery LA, Amato F, Scott SJ, Myllymaa S, Kaivo-Oja N, Lankinen H, Mottershead DG, Groome NP, Ritvos O (2004) Immuno-neutralization of growth differentiation factor 9 reveals it partially accounts for mouse oocyte mitogenic activity. Biol Reprod 71:732–739PubMedCrossRefGoogle Scholar
  16. Groisillier A, Herve C, Jeudy A, Rebuffet E, Pluchon PF, Chevolot Y, Flament D, Geslin C, Morgado IM, Power D, Branno M, Moreau H, Michel G, Boyen C, Czjzek M (2010) Marine express: taking advantage of high throughput cloning and expression strategies for the post-genomic analysis of marine organisms. Microb Cell Fact 9:45–56PubMedCrossRefGoogle Scholar
  17. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723PubMedCrossRefGoogle Scholar
  18. Hernandez-Pando R, Orozco-Esteves H, Maldonado HA, Aguilar-Leonn D, Vilchis-Landeros MM, Mata-Espinoza DA, Mendoza V, Lopez-Casillas F (2006) A combination of a transforming growth factor-β antagonist and a inhibitor of cyclooxygenase is an effective treatment for murine pulmonary tuberculosis. Clin Exp Immunol 144:264–272PubMedCrossRefGoogle Scholar
  19. Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28:461–485PubMedCrossRefGoogle Scholar
  20. Huvet A, Normand J, Fleury E, Quillien V, Fabioux C, Boudry P (2010) Reproductive effort of Pacific oysters: a trait associated with susceptibility to summer mortality. Aquaculture 304:95–99CrossRefGoogle Scholar
  21. Ingman WV, Robertson SA (2002) Defining the actions of transforming growth factor-β in reproduction. BioEssays 24:904–914PubMedCrossRefGoogle Scholar
  22. Itman C, Mendis S, Barakat B, Loveland KL (2006) All in the family: TGF-β family action in testis development. Reproduction 132:233–246PubMedCrossRefGoogle Scholar
  23. Josso N, Di Clemente N (1999) TGF-beta family members and gonadal development. Trends Endocrinol Metab 10:216–222PubMedCrossRefGoogle Scholar
  24. Knight PG, Glister C (2006) TGF-β superfamily members and ovarian follicle development. Reproduction 132:191–206PubMedCrossRefGoogle Scholar
  25. Kohli G, Hu S, Clelland E, Di Muccio T, Rothenstein J, Peng C (2003) Cloning of transforming growth factor-β1 and its type II receptor from zebrafish ovary and role of TGF-β1 in oocyte maturation. Endocrinology 144(5):1931–1941PubMedCrossRefGoogle Scholar
  26. Kohli G, Clelland E, Peng C (2005) Potential targets of transforming growth factor-β1 during inhibition of oocyte maturation in zebrafish. Reprod Biol Endocrinol 3:53–59PubMedCrossRefGoogle Scholar
  27. Le Foll C, Corporeau C, Le Guen V, Gouygou JP, Bergé JP, Delarue J (2007) Long-chain n-3 polyunsaturated fatty acids dissociate phosphorylation of Akt from phosphatidylinoisitol 3’-kinase activity in rats. Am J Physiol Endocrinol Metabol 292:1223–1230CrossRefGoogle Scholar
  28. Lelong C, Mathieu M, Favrel P (2000) Structure and expression of mGDF, a new member of the transforming growth factor-beta superfamily in the bivalve mollusc Crassostrea gigas. Eur J Biochem 267:3986–3993PubMedCrossRefGoogle Scholar
  29. Lelong C, Badariotti F, Le Quere H, Rodet F, Dubos MP, Favrel P (2007) Cg-TGF-β, a TGF-β/activin homologue in the Pacific oyster Crassostrea gigas, is involved in immunity against Gram-negative microbial infection. Dev Comp Immunol 31(1):30–38PubMedCrossRefGoogle Scholar
  30. Leighton M, Kadler KE (2003) Paired basic/furin-like proprotein convertase cleavage of pro-BMP-1 in the Trans-Golgi network. J Biol Chem 278:18478–18484PubMedCrossRefGoogle Scholar
  31. Lyon M, Rushton G, Gallagher JT (1997) The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform-specific. J Biol Chem 272:18000–18006PubMedCrossRefGoogle Scholar
  32. Ma LJ, Jha S, Ling H, Pozzi A, Ledbetter S, Fogo AB (2004) Divergent effects of low versus high dose anti-TGF-β antibody in puromycin aminonucleoside nephropathy in rats. Kidney Int 65:106–115PubMedCrossRefGoogle Scholar
  33. Massague J, Wotton D (2000) Transcriptional control by the TGF-β/Smad signalling system. EMBO J 19:1745–1754PubMedCrossRefGoogle Scholar
  34. Massague J, Blain SW, Lo RS (2000) TGF-β signalling in growth control, cancer, and heritable disorders. Cell 103:295–309PubMedCrossRefGoogle Scholar
  35. Memon MA, Anway MD, Covert TR, Uzumcu M, Skinner MK (2008) Transforming growth-factor beta (beta 1, beta 2 and beta 3) null-mutant phenotypes in embryonic gonadal development. Mol Cell Endocrinol 294:70–80PubMedCrossRefGoogle Scholar
  36. Mendez C, Alcantara L, Escalona R, Lopez-Casillas F, Pedernera E (2006) Transforming growth factor beta inhibits proliferation of somatic cells without influencing germ cell number in the chicken embryonic ovary. Cell Tissue Res 325:143–149CrossRefGoogle Scholar
  37. Moore RK, Erickson GF, Shimasaki S (2004) Are BMP15 and GSDF9 primary determinants of ovulation quota in mammals? Trends Endocrinol Metab 15:356–361PubMedCrossRefGoogle Scholar
  38. Moore RK, Shimasaki S (2005) Molecular biology and physiological role of the oocyte factor BMP15. Mol Cell Endocrinol 234:67–73PubMedCrossRefGoogle Scholar
  39. Omer FM, Riley EM (1998) Transforming growth-factor-β production is inversely correlated with severity of murine malaria infection. J Exp Med 188:39–48PubMedCrossRefGoogle Scholar
  40. Otsuka F, Yamamoto S, Erickson GF, Shimasaki S (2001) Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem 276:11387–11392PubMedCrossRefGoogle Scholar
  41. Patterson GI, Padgett RW (2000) TGF-β related pathways: roles in Caenorhabditis elegans development. Trends Genet 16:27–33PubMedCrossRefGoogle Scholar
  42. Pinheiro RO, Pinto EF, Lopes JR, Guedes HL, Fentanes RF, Rossi-Bergmann B (2005) TGF-beta associated enhanced susceptibility to leishmaniasis following intramuscular vaccination of mice with leishmania amazonensis antigens. Microbes Infect 7:1317–1323PubMedCrossRefGoogle Scholar
  43. Rider CC (2006) Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochem Soc Trans 34:458–460PubMedCrossRefGoogle Scholar
  44. Royer J, Seguineau C, Park K, Pouvreau S, Choi KS, Costil K (2008) Gametogenetic cycle and reproductive effort assessed by two methods in 3 age classes of Pacific oysters, Crassostrea gigas, reared in Normandy. Aquaculture 277:313–320CrossRefGoogle Scholar
  45. Samain JF, Dégremont L, Soletchnik P, Haure J, Bédier E, Ropert M, Moal J, Huvet A, Bacca H, Van Wormhoudt A, Delaporte M, Costil K, Pouvreau S, Lambert C, Boulo V, Soudant P, Nicolas JL, Le Roux F, Renault T, Gagnaire B, Géret F, Boutet I, Burgeot T, Boudry P (2007) Genetically based resistance to summer mortality in the Pacific oyster Crassostrea gigas and its relationship with physiological, immunological characteristics and infection process. Aquaculture 268:227–243CrossRefGoogle Scholar
  46. Samain JF, Mc Combie H (2008) Summer mortality of Pacific oyster Crassostrea gigas. The Morest Project. Ed. Ifremer Quae, Versailles, France, p 379Google Scholar
  47. Sawatari E, Shikina S, Takeuchi T, Yoshizaki G (2007) A novel transforming growth factor-b superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout Oncorhynchus mykiss. Dev Biol 301:266–275PubMedCrossRefGoogle Scholar
  48. Scheufler C, Sebald W, Hülsmeyer M (1999) Crystal structure of human bone morphogenetic protein-2 at 2.7 Å resolution. J Mol Biol 287:103–115PubMedCrossRefGoogle Scholar
  49. Schulz RW, DeFrança LR, Lareyre JJ, LeGac F, Chiarini-Garcia H, Nobrega RH, Miura T (2009) Spermatogenesis in fish. Gen Comp Endocrinol 165:390–411PubMedCrossRefGoogle Scholar
  50. Sharma K, Jin Y, Guo J, Ziyadeh FN (1996) Neutralization of TGF-β by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 45:522–530PubMedCrossRefGoogle Scholar
  51. Shimasaki S, Moore RK, Otsuka F, Erickson GF (2004) The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 25:72–101PubMedCrossRefGoogle Scholar
  52. Steele S, Mulcahy MF (1999) Gametogenesis of the oyster Crassostrea gigas in southern Ireland. J Mar Biol Assoc UK 70:673–686CrossRefGoogle Scholar
  53. Subramanian G, Schwarz RE, Higgins L, McEnroe G, Chakravarty S, Dugar S, Reiss M (2004) Targeting endogenous growth factor beta receptor signalling in Smad4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype 1. Cancer Res 64:5200–5211PubMedCrossRefGoogle Scholar
  54. Ten Dijke P, Miyazono K, Heldin CH (2000) Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends Biochem Sci 25:64–70PubMedCrossRefGoogle Scholar
  55. Vitt UA, Hsu SY, Hsueh AJ (2001) Evolution and classification of cystine knot-containing hormones and related extracellular signalling molecules. Mol Endocrinol 15:681–694PubMedCrossRefGoogle Scholar
  56. Zdobnov EM, Apweiler R (2001) InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Charlotte Corporeau
    • 1
    • 4
    Email author
  • Agnès Groisillier
    • 2
  • Alexandra Jeudy
    • 2
  • Tristan Barbeyron
    • 2
  • Elodie Fleury
    • 1
  • Caroline Fabioux
    • 3
  • Mirjam Czjzek
    • 2
  • Arnaud Huvet
    • 1
  1. 1.UMR 100 Ifremer-centre de Brest, PE2MPlouzanéFrance
  2. 2.CNRS-UPMC Univ Paris 6UMR 7139 Végétaux marins et Biomolécules, LIA DIAMSRoscoffFrance
  3. 3.UMR CNRS 6539, LEMARUniversité de Bretagne Occidentale, IUEMPlouzanéFrance
  4. 4.Département de Physiologie Fonctionnelle des Organismes Marins. Ifremer. Technopôle Brest-IroisePlouzanéFrance

Personalised recommendations