Skip to main content

Advertisement

Log in

Cellular Localization of Debromohymenialdisine and Hymenialdisine in the Marine Sponge Axinella sp. Using a Newly Developed Cell Purification Protocol

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Sponges (Porifera), as the best known source of bioactive marine natural products in metazoans, play a significant role in marine drug discovery and development. As sessile filter-feeding animals, a considerable portion of the sponge biomass can be made of endosymbiotic and associated microorganisms. Understanding the cellular origin of targeted bioactive compounds from sponges is therefore important not only for providing chemotaxonomic information but also for defining the bioactive production strategy in terms of sponge aquaculture, cell culture, or fermentation of associated bacteria. The two alkaloids debromohymenialdisine (DBH) and hymenialdisine (HD), which are cyclin-dependent kinase inhibitors with pharmacological activities for treating osteoarthritis and Alzheimer's disease, have been isolated from the sponge Axinella sp. In this study, the cellular localization of these two alkaloids was determined through the quantification of these alkaloids in different cell fractions by high-performance liquid chromatography (HPLC). First, using a differential centrifugation method, the dissociated cells were separated into different groups according to their sizes. The two bioactive alkaloids were mainly found in sponge cells obtained from low-speed centrifugation. Further cell purifications were accomplished by a newly developed multi-step protocol. Four enriched cell fractions (C1, C2, C3, and C4) were obtained and subjected to light and transmission electron microscopy, cytochemical staining, and HPLC quantification. Compared to the low concentrations in other cell fractions, DBH and HD accounted for 10.9% and 6.1%, respectively, of dry weight in the C1 fraction. Using the morphological characteristics and cytochemical staining results, cells in the C1 fraction were speculated to be spherulous cells. This result shows that DBH and HD in Axinella sp. are located in sponge cells and mostly stored in spherulous cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andrade P, Willoughby R, Pomponi SA, Kerr RG (1999) Biosynthetic studies of the alkaloid, stevensine, in a cell culture of the marine sponge Teichaxinella morchella. Tetrahedron Lett 40:4775–4778

    Article  CAS  Google Scholar 

  • Belarbi EH, Gόmez AC, Chisti Y, Camacho FG, Grima EM (2003) Producing drugs from marine sponges. Biotechnol Adv 21:585–598

    Article  CAS  Google Scholar 

  • Bergquist PR (1978) Sponges. Hutchinson, London

    Google Scholar 

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of the metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244

    Article  PubMed  CAS  Google Scholar 

  • Bonasoro F, Wilkie IC, Bavestrello G, Cerrano C, Candia Carnevali MD (2001) Dynamic structure of the mesohyl in the sponge Chondrosia reniformis (Porifera, Demospongiae). Zoomorphology 121:109–121

    Article  Google Scholar 

  • Bretting H, Königsmann K (1979) Investigations on the lectin-producing cells in the sponge Axinella polypoides (Schmidt). Cell Tissue Res 201:487–497

    Article  PubMed  CAS  Google Scholar 

  • Bretting H, Jacobs G, Donadey C, Vacelet J (1983) Immunohistochemical studies on the distribution and the function of the d-galactose-specific lectins in the sponge Axinella polypoides (Schmidt). Cell Tissue Res 229:551–571

    Article  PubMed  CAS  Google Scholar 

  • Burkart W, Jumblatt J, Simpson TL, Burger MM (1979) Macromolecules which mediate cell–cell recognition in Microciona prolifera. In: Lévi C, Boury-Esnault N (eds) Sponge biology, 291st edn. Centre National de la Recherche Scientifique, Paris, pp 239–246

    Google Scholar 

  • Cao XP, Fu WT, Yu XJ, Zhang W (2007) Dynamics of spicule production in the marine sponge Hymeniacidon perlevis during in vitro cell culture and seasonal development in the field. Cell Tissue Res 329:595–608

    Article  PubMed  Google Scholar 

  • Chipman S, Faulkner DJ (1996) Use of debromohymenialdisine and related compounds for treating osteoarthritis. WO 1996/040147

  • Cimino G, De Rosa S, De Stefano D, Mazzarella L, Puliti R, Sodano G (1982) Isolation and X-ray crystal structure of a novel bromo-compound from two marine sponges. Tetrahedron Lett 23:767–768

    Article  CAS  Google Scholar 

  • Custódio MR, Hajdu E, Muricy G (2004) Cellular dynamics of in vitro allogeneic reactions of Hymeniacidon heliophila (Demospongiae: Halichondrida). Mar Biol 144:999–1010

    Article  Google Scholar 

  • Erpenbeck D, van Soest RWM (2007) Status and perspective of sponge chemosystematics. Mar Biotechnol 9:2–19

    Article  PubMed  CAS  Google Scholar 

  • Flowers AE, Garson MJ, Webb RI, Dumdei EJ, Charan RD (1998) Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res 292:597–607

    Article  PubMed  CAS  Google Scholar 

  • Funayama N (2010) The stem cell system in demosponges: insights into the origin of somatic stem cells. Dev Growth Differ 52:1–14

    Article  PubMed  CAS  Google Scholar 

  • Funayama N, Nakatsukasa M, Hayashi T, Agata K (2005a) Isolation of the choanocyte in the fresh water sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin. Develop Growth Differ 47:243–253

    Article  CAS  Google Scholar 

  • Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005b) Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge, Ephydatia fluviatilis. Zool Sci 22:1113–1122

    Article  CAS  Google Scholar 

  • Gaino E, Scalera Liaci L, Sciscioli M, Corriero G (2006) Investigation of the budding process in Tethya citrina and Tethya aurantium (Porifera, Demospongiae). Zoomorphology 125:87–97

    Article  Google Scholar 

  • Garson MJ, Thompson JE, Larsen RM, Battershill CN, Murphy PT, Bergquist PR (1992) Terpenes in sponge cell membranes: cell separation and membrane fractionation studies with the tropical marine sponge Amphimedon sp. Lipids 27:378–388

    Article  CAS  Google Scholar 

  • Garson MJ, Zimmermann MR, Battershill CN, Holden JL, Murphy PT (1994) The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis. Lipids 29:509–516

    Article  PubMed  CAS  Google Scholar 

  • Garson MJ, Flowers AE, Webb RI, Charan RD, McCaffrey EJ (1998) A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by Percoll density gradient fractionation. Cell Tissue Res 293:365–373

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Lea PJ (2002) The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 60:651–674

    Article  PubMed  CAS  Google Scholar 

  • John HA, Campo MS, Mackenzie AM, Kemp RB (1971) Role of different sponge cell types in species specific cell aggregation. Nat New Biol 230:126–128

    Article  PubMed  CAS  Google Scholar 

  • Kelman D, Kashman Y, Rosenberg E, Ilan M, Ifrach I, Loya Y (2001) Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. Aquat Microb Ecol 24:9–16

    Article  Google Scholar 

  • Laroche M, Imperatore C, Grozdanov L, Costantino V, Mangoni A, Hentschel U, Fattorusso E (2007) Cellular localization of secondary metabolites isolated from the Caribbean sponge Plakortis simplex. Mar Biol 151:1365–1373

    Article  CAS  Google Scholar 

  • Lopez JV, Peterson CL, Willoughby R, Wright AE, Enright E, Zoladz S, Reed JK, Pomponi SA (2002) Characterization of genetic markers for in vitro cell line identification of the marine sponge Axinella corrugata. J Hered 93:27–36

    Article  PubMed  CAS  Google Scholar 

  • Maldonado M (2007) Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J Mar Biol Assoc UK 87:1701–1713

    Article  Google Scholar 

  • Maldonado M (2009) Embryonic development of verongid demosponges supports the independent acquisition of spongin skeletons as an alternative to the siliceous skeleton of sponges. Biol J Linn Soc 97:427–447

    Article  Google Scholar 

  • Meijer L, Thunnissen A-MWH, White AW, Garnier M, Nikolic M, Tsai LH, Walter J, Cleverley KE, Salinas PC, Wu YZ, Biernat J, Mandelkow EM, Kim SH, Pettit GR (2000) Inhibition of cyclin-dependent kinases, GSK-3β and CK1 by hymenialdisine, a marine sponge constituent. Chem Biol 7:51–63

    Article  PubMed  CAS  Google Scholar 

  • Moore BS (2006) Biosynthesis of marine natural products: macroorganisms (part B). Nat Prod Rep 23:615–629

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG (2006) The stem cell concept in sponges (Porifera): metazoan traits. Semin Cell Dev Biol 17:481–491

    Article  PubMed  Google Scholar 

  • Müller WEG, Korzhev M, Le Pennec G, Müller IM, Schröder HC (2003) Origin of metazoan stem cell system in sponges: first approach to establish the model (Suberites domuncula). Biomol Eng 20:369–379

    Article  PubMed  Google Scholar 

  • Müller WEG, Böhm M, Batel R, De Rosa S, Tommonaro G, Müller IM, Schröder HC (2000) Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara. J Nat Prod 63:1077–1081

    Article  PubMed  Google Scholar 

  • Osinga R, Armstrong E, Burgess JG, Hoffmann F, Reitner J, Schumann-Kindel G (2001) Sponge–microbe associations and their importance for sponge bioprocess engineering. Hydrobiologia 461:55–62

    Article  Google Scholar 

  • Pomponi SA (1999) The bioprocess–technological potential of the sea. J Biotechnol 70:5–13

    Article  CAS  Google Scholar 

  • Pomponi SA, Willoughby R (1994) Sponge cell culture for production of bioactive metabolites. In: van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponges in time and space. Proceedings of the 4th International Porifera Conference, Amsterdam. Balkema, Rotterdam

  • Richelle-Maurer E, Braekman JC, De Kluijver MJ, Gomez R, van de Vyver G, van Soest RWM, Devijver C (2001) Cellular location of (2R,3R,7Z)-2-aminotetradec-7-ene-1,3-diol, a potent antimicrobial metabolite produced by the Caribbean sponge Haliclona vansoesti. Cell Tissue Res 306:157–165

    Article  PubMed  CAS  Google Scholar 

  • Richelle-Maurer E, De Kluijver MJ, Feio S, Gaudêncio S, Gaspar H, Gomez R, Tavares R, van de Vyver G, van Soest RWM (2003) Localization and ecological significance of oroidin and sceptrin in the Caribbean sponge Agelas conifera. Biochem Syst Ecol 31:1073–1091

    Article  CAS  Google Scholar 

  • Roy KK, Sausville EA (2001) Early development of cyclin dependent kinase modulators. Curr Pharm Des 7:1669–1687

    Article  PubMed  CAS  Google Scholar 

  • Salomon CE, Deerinck T, Ellisman MH, Faulkner DJ (2001) The cellular localization of dercitamide in the Palauan sponge Oceanapia sagittaria. Mar Biol 139:313–319

    Article  CAS  Google Scholar 

  • Simpson TL (1963) The biology of the marine sponge Microciona prolifera (Ellis and Solander). I. A study of cellular function and differentiation. J Exp Zool 154:135–147

    Article  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, New York

    Google Scholar 

  • Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH (2005a) Marine sponges as pharmacy. Mar Biotechnol 7:142–162

    Article  CAS  Google Scholar 

  • Sipkema D, Osinga R, Schatton W, Mendola D, Tramper J, Wijffels RH (2005b) Large-scale production of pharmaceuticals by marine sponges: sea, cell, or synthesis? Biotechnol Bioeng 90:201–222

    Article  CAS  Google Scholar 

  • Sun LM, Song YF, Qu Y, Yu XJ, Zhang W (2007) Purification and in vitro cultivation of archaeocytes (stem cells) of the marine sponge Hymeniacidon perleve (Demospongiae). Cell Tissue Res 328:223–237

    Article  PubMed  Google Scholar 

  • Supriyono A, Schwarz B, Wray V, Witte L, Müller WEG, van Soest R, Sumaryono W, Proksch P (1995) Bioactive alkaloids from the tropical marine sponge Axinella carteri. Z Naturforsch C 50:669–674

    PubMed  CAS  Google Scholar 

  • Thoms C, Hentschel U, Schmitt S, Peter J, Schupp PJ (2008) Rapid tissue reduction and recovery in the sponge Aplysinella sp. Mar Biol 156:141–153

    Article  Google Scholar 

  • Thompson JE, Barrow KD, Faulkner DJ (1983) Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of the marine sponge Aplysina fistularis (=Verongia thiona). Acta Zool 64:199–210

    Article  Google Scholar 

  • Uriz MJ, Turon X, Galera J, Tur JM (1996) New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell Tissue Res 285:519–527

    Article  Google Scholar 

  • van Soest R, Richelle-Maurer E, Gomez R, Braekman J-C (2001) Protocols for developing sponge compounds involving the source organism. Final report, Symbiosponge Project

  • Vilanova E, Coutinho C, Maia G, Mourão PA (2010) Sulfated polysaccharides from marine sponges: conspicuous distribution among different cell types and involvement on formation of in vitro cell aggregates. Cell Tissue Res 340:523–531

    Article  PubMed  CAS  Google Scholar 

  • Wilson DM, Puyana M, Fenical W, Pawlik JR (1999) Chemical defense of the Caribbean reef sponge Axinella corrugata against predatory fishes. J Chem Ecol 25:2811–2823

    Article  CAS  Google Scholar 

  • Yang JS (1991) Cytochemical and cytobiological techniques. PUMC & BMU, Beijing

    Google Scholar 

  • Zhang XY, Cao XP, Zhang W, Yu XJ, Jin MF (2003) Primmorphs from archaeocytes-dominant cell population of the sponge Hymeniacidon perleve: improved cell proliferation and spiculogenesis. Biotechnol Bioeng 84:583–590

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Jin Y, Zhang W (2006) Two bioactive aldisine alkaloids isolated from marine sponge Axinella sp. in the South China Sea. J Chin Med Mater 29:1299–1301

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the “Hi-Tech Research and Development Program of China” (2006AA09Z435), the “Innovation Fund” from the Dalian Institute of Chemical Physics (K2006A19), the program of Dalian Municipal Science and Technology Bureau, and “The Start-up Foundation for the Doctor” from the Dalian Institute of Chemical Physics (S201011). The authors are grateful to Dr. Manuel Maldonado for advice on TEM sample preparation and cell identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, YF., Qu, Y., Cao, XP. et al. Cellular Localization of Debromohymenialdisine and Hymenialdisine in the Marine Sponge Axinella sp. Using a Newly Developed Cell Purification Protocol. Mar Biotechnol 13, 868–882 (2011). https://doi.org/10.1007/s10126-010-9347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9347-2

Keywords

Navigation