Skip to main content
Log in

Occurrence of a Silicatein Gene in Glass Sponges (Hexactinellida: Porifera)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Silicatein genes are involved in spicule formation in demosponges (Demospongiae: Porifera). However, numerous attempts to isolate silicatein genes from glass sponges (Hexactinellida: Porifera) resulted in a limited success. In the present investigation, we performed analysis of potential silicatein/cathepsin transcripts in three different species of glass sponges (Pheronema raphanus, Aulosaccus schulzei, and Bathydorus levis). In total, 472 clones of such transcripts have been analyzed. Most of them represent cathepsin transcripts and only three clones have been found to represent transcripts, which can be related to silicateins. Silicatein transcripts were identified in A. schulzei (Hexactinellida; Lyssacinosida; Rosselidae), and the corresponding gene was called AuSil-Hexa. Expression of AuSil-Hexa in A. schulzei was confirmed by real-time PCR. Comparative sequence analysis indicates high sequence identity of the A. schulzei silicatein with demosponge silicateins described previously. A phylogenetic analysis indicates that the AuSil-Hexa protein belongs to silicateins. However, the AuSil-Hexa protein contains a catalytic cysteine instead of the conventional serine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Berti P, Storer A (1995) Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 246:273–283

    Article  PubMed  CAS  Google Scholar 

  • Brutchey RL, Morse DE (2008) Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem Rev 108:4915–4934

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Dayton PK (1979) Observations of growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. In: Lévi C and Boury-Esnault N (eds.) Colloques internationaux du C.N.R.S. 291. Biologie des spongiaires. E´ ditions du Centre National de la Recherche Scientifique, Paris. pp. 271–282

  • Ehrlich H, Worch H (2007) Collagen: a huge matrix in glass sponge flexible spicules of the meter-long Hyalonema sieboldi. In: Bäuerlein E (ed) Handbook of biomineralization. Wiley, Weinheim, pp 23–41

    Google Scholar 

  • Ehrlich H, Ereskovsky A, Drozdov A, Krylova D, Hanke T, Meissner H, Heinemann S, Worch H (2006) A modern approach to demineralisation of spicules in the glass sponges (Hexactinellida: Porifera) for the purpose of extraction and examination of the protein matrix. Russ J Mar Biol 32:186–193

    Article  CAS  Google Scholar 

  • Ehrlich H, Krautter M, Hanke T, Simon P, Knieb C, Heinemann S, Worch H (2007) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool (Mol Dev Evol) 308B:473–483

    Article  CAS  Google Scholar 

  • Ehrlich H, Deutzmann R, Brunner E, Cappellini E, Koon H, Solazzo C, Yang Y, Ashford D, Thomas-Oates J, Lubeck M, Baessmann C, Langrock T, Hoffmann R, Wörheide G, Reitner J, Simon P, Tsurkan M, Ereskovsky AV, Kurek D, Bazhenov VV, Hunoldt S, Mertig M, Vyalikh DV, Molodtsov SL, Kummer K, Worch H, Smetacek V, Collins MJ (2010) Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nat Chem 12:1084–1088

    Google Scholar 

  • Fairhead M, Johnson K, Kowatz T, McMahon S, Carter L, Oke M, Liu H, Naismith J, van der Walle C (2008) Crystal structure and silica condensing activities of silicatein alpha-cathepsin L chimeras. Chem Commun (Camb) 15:1765–1767

    Article  Google Scholar 

  • Gatti S (2002) High Antarctic carbon and silicon cycling—how much do sponges contribute? VI International Sponge Conference. In: Book of Abstracts, Bollettino dei Musei Instituti Biologici, vol. 66–67 University of Genoa. p. 76

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Heinemann S, Ehrlich H, Knieb C, Hanke T (2007) Biomimetically inspired hybrid materials based on silicified collagen. Int J Mat Res 98:603–608

    CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Kozhemyako VB, Veremeichik GN, Shkryl YN, Kovalchuk SN, Krasokhin VB, Rasskazov VA, Zhuravlev YN, Bulgakov VP, Kulchin YN (2010) Silicatein genes in spicule-forming and non-spicule-forming Pacific demosponges. Mar Biotechnol 12:403–409

    Article  PubMed  CAS  Google Scholar 

  • Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    Article  PubMed  CAS  Google Scholar 

  • Krautter M (2002) Fossil Hexactinellida: an overview. In: Hooper JNA, van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Plenum, New York, pp 1211–1223

    Google Scholar 

  • Matz M, Shagin D, Bogdanova O, Lukyanov S, Diatchenko L, Chenchik A (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 2:1558–1560

    Article  Google Scholar 

  • Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N (2008) Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn 237:3024–3039

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG, Boreiko A, Wang X, Belikov SI, Weins M, Grebenjuk VA, Schloßmacher U, Schröder HC (2007) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71

    Article  PubMed  Google Scholar 

  • Müller WEG, Boreiko A, Schloßmacher U, Wang X, Eckert C, Kropf K, Li J, Schröder HC (2008a) Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni. J Exp Biol 211:300–309

    Article  PubMed  Google Scholar 

  • Müller WEG, Wang X, Kropf K, Boreiko A, Schloßmacher U, Brandt D, Schröder HC, Wiens M (2008b) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333:339–351

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Schröder H, Perović-Ottstadt S, Wiens M, Batel R, Müller IM, Müller WEG (2004) Differentiation capacity of epithelial cells in the sponge Suberites domuncula. Cell Tissue Res 316:271–280

    Article  PubMed  Google Scholar 

  • Schröder H, Perović-Ottstadt S, Grebenjuk VA, Engel S, Müller IM, Müller WEG (2005) Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics 85:666–678

    Article  PubMed  Google Scholar 

  • Schröder H, Wang X, Tremel W, Ushijima H, Müller W (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474

    Article  PubMed  Google Scholar 

  • Shimizu K, Cha J, Stucky G, Morse D (1998) Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP* Phylogenetic analysis using parsimony. Version 4.0b10. Sinauer Associates, Massachusetts

    Google Scholar 

  • Uriz M-J, Turon X, Becerro MA, Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc Res Tech 62:279–299

    Article  PubMed  CAS  Google Scholar 

  • Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perović-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216:229–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Grant Program “Principles of Basic Investigations of Nanotechnologies and Nanomaterials” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor P. Bulgakov.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplemental Figure 1

The multiple sequence alignment of poriferan silicateins and cathepsins. (DOC 8,323 kb)

Supplemental Figure 2

A phylogram of sponge silicateins and cathepsins resulting from the Bayesian analysis (WAG + I + G substitution model). Silicateins are marked by different colors: subclade I (blue), subclade II (purple), and subclade III (green). The scale bar indicates the number of changes per site. (DOC 28 kb)

Supplemental Figure 3

A phylogram of sponge silicateins and cathepsins resulting from the maximum likelihood analysis (WAG + I + G substitution model). Silicateins are marked by different colors: subclade I (blue), subclade II (purple), and subclade III (green). The scale bar indicates the number of changes per site. (DOC 28 kb)

Supplemental Figure 4

A phylogram of sponge silicateins and cathepsins resulting from the maximum parsimony analysis using a stepmatrix derived from the Blosum62 amino acid transition matrix. Silicateins are marked by different colors: subclade I (blue), subclade II (purple), and subclade III (green). The scale bar indicates the number of changes. (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veremeichik, G.N., Shkryl, Y.N., Bulgakov, V.P. et al. Occurrence of a Silicatein Gene in Glass Sponges (Hexactinellida: Porifera). Mar Biotechnol 13, 810–819 (2011). https://doi.org/10.1007/s10126-010-9343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9343-6

Keywords

Navigation