Skip to main content

Advertisement

Log in

Long-Term Cultivation of Primmorphs from Freshwater Baikal Sponges Lubomirskia baikalensis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The work was aimed at performing long-term cultivation of primmorphs in vitro from freshwater sponge Lubomirskia baikalensis (Pallas 1776), collected from Lake Baikal, obtaining its long-term primmorph culture in both natural (NBW) and artificial (ABW) Baikal water and at identifying the impact of different environmental factors on formation and growth of primmorphs. The first fine aggregates of L. baikalensis are formed in vitro 10–15 min after dissociation of sponge cells. Epithelization of aggregates begins 4 h later after the dissociation. Young primmorphs are formed 1 or 2 days later. The surface of primmorphs is covered with a layer of exopinacocytes. The primmorphs remain viable for more than 10 months at 3–6°C. Over 50% of primmorphs in NBW and 25% in ABW are attached to the substrate and grow like adult sponges. Thus, the long-term primmorph cultivation in vitro allows the creation of a controlled live model system under experimental conditions. The results of this work will allow the creation of a cell culture collection of Baikal freshwater sponges for studying morphogenesis of primmorphs during cultivation at different stages and transdifferentiation of their cells, physiological functions of sponge cells, processes of spiculogenesis, identification of proteins involved in biomineralization process, decoding of their genes, as well as a spectrum of secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Belarbi EH, Ramírez DM, Cerón García MC, Contreras Gómez A, García CF, Molina GE (2003) Cultivation of explants of the marine sponge of the marine sponge Crambe crambe in closed systems. Biomol Eng 20:333–337

    Article  CAS  Google Scholar 

  • Bil K, Titlyanov E, Berner T, Fomina I, Muscatine L (1999) Some aspects of the physiology and biochemistry of Lubomirska baikalensis, a sponge from Lake Baikal containing symbiotic algae. Symbiosis 26(2):179–191

    CAS  Google Scholar 

  • Cao X, Fu W, Yu X, Zhang W (2007) Dynamics of spicule production in the marine sponge Hymeniacidon perlevis during in vitro cell culture and seasonal development in the field. Cell Tissue Res 329:595–608

    Article  PubMed  Google Scholar 

  • Chernogor LI, Denikina NN, Belikov SI (2010) New approach to the study of eukaryotic symbionts from the Baikal sponge Lubomirskia baikalensis. International Scientific Conference on Actual Problems in the Activity of Academic Natural-Scientific Museums, pp 186–189

  • Cimino G, De Stefano S, Minale L, Fattorusso E (1972) Ircinin-1 and -2, linear sesterterpenes from the marine sponge Ircinia oros. Tetrahedron 28:333–341

    Article  CAS  Google Scholar 

  • Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brummer F, Nikel M, Müller WEG (1998) Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Age Dev 105:45–59

    Article  CAS  Google Scholar 

  • De Rosa S, De Caro S, Tommonaro G, Slantchev K, Stefanov K, Popov S (2001) Development in a primary cell culture of the marine sponge Ircinia muscarum and analysis of the polar compounds. Mar Biotechnol 3:281–286

    Article  PubMed  Google Scholar 

  • De Rosa S, De Caro S, Iodice C, Tommonaro G, Stefanov K, Popov S (2003) Development in primary cell culture of demosponges. J Biotechnol 100:119–125

    Article  PubMed  Google Scholar 

  • Efremova SM (1972) Morphophysiological analysis of development of freshwater sponges Ephydatia fluviatilis & Spongilla lacustris from the dissociated cells. Trudy Leningrad Obsh Estestvoisp 78:110–154

    Google Scholar 

  • Efremova SM (1981) The structure and embryogenesis of the Baikal sponge Lubomirskia baikalensis (Pallas) and relations of Lubomirskiidae with other sponges. In: Korotkhova GP (ed) Morphogenesis in sponges, vol 33. Leningrad University, Leningrad, pp 93–107

    Google Scholar 

  • Efremova SM, Margulis BA, Guzhova EV, Itskovich VB, Lauenroth S, Müller WEG, Schroder HC (2002a) Heat shock protein Hsp70 expression and DNA damage in Baikalian sponges exposed to model pollutants and wastewater from Baikalsk pulp and paper plant. Aquat Toxicol 57:267–280

    Article  PubMed  CAS  Google Scholar 

  • Efremova SM, Itskovich VB, Parfenova VV, Drucker VV, Müller WEG, Schroder H (2002b) Reviews: Lake Baikal: a unique place to study evolution of sponges and their stress response in an environment nearly unimpaired by anthropogenic perturbation. Cell Mol Biol 48:359–371

    PubMed  CAS  Google Scholar 

  • Ereskovsky AV (2010) The comparative embryology of sponges. Springer, Amsterdam

    Book  Google Scholar 

  • Falkner KK, Measures CI, Herbelin SE, Edmond JM (1991) The major and minor element geochemistry of Lake Baikal. Limnol Oceanogr 36:413–423

    Article  CAS  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    PubMed  CAS  Google Scholar 

  • Grachev MA (2002) About a modern condition of ecological system of lake Baikal. The Siberian Branch of the Russian Academy of Science, Novosibirsk

    Google Scholar 

  • Ilan M, Contini H, Carmeli S, Rinkevich B (1996) Progress towards cell cultures from a marine sponge that produces bioactive compounds. J Mar Biotech 4:145–149

    Google Scholar 

  • Klautau M, Custodio MR, Borojevic R (1994) In vitro culture of primary cell lines from marine sponges. In: van Soest RWM, van Kempten TMG, Braekman J (eds) Sponges in time and space. Balkema, Rotterdam, pp 401–406

    Google Scholar 

  • Koziol C, Borojevic R, Steffen R, Müller WEG (1998) Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech Age Dev 100:107–120

    Article  CAS  Google Scholar 

  • Latyshev NA, Zhukova NV, Efremova SM, Imbs AB, Glysina OI (1992) Effect of habitat on participation of symbionts in formation of the fatty acid pool of freshwater sponges of Lake Baikal. Comp Biochem Physiol 102B:961–965

    CAS  Google Scholar 

  • Lavrov D (2010) Rapid proliferation of repetitive palindromic elements in mtDNA of the endemic Baikalian sponge Lubomirskia baikalensis. Mol Biol Evol 27(4):757–760

    Article  PubMed  CAS  Google Scholar 

  • Manconi R, Pronzato R (2002) Suborder Spongillina subord. nov.: freshwater sponges. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges, vol 1. Kluwer, New York, pp 921–1020

    Google Scholar 

  • MarinLit (1999) A marine literature database maintained by the Marine Chemistry Group. University of Canterbury, Christchurch

    Google Scholar 

  • Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol 65:55–63

    Google Scholar 

  • Müller WEG, Wiens M, Batel R, Steffen R, Schroder HC, Borojevic R, Custodio MR (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Prog Ser 178:205–219

    Article  Google Scholar 

  • Müller WEG, Bohm M, Batel R, De Rosa S, Tommonaro G, Müller IM, Schroder HC (2000) Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara. J Nat Prod 63:1077–1081

    Article  PubMed  Google Scholar 

  • Müller WEG, Krasko A, Le Pennec G, Schröder HC (2003) Biochemistry and cell biology of silica formation in sponges. Microsc Res Tech 62:368–377

    Article  PubMed  Google Scholar 

  • Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297

    Article  PubMed  Google Scholar 

  • Müller WEG, Belikov SI, Kaluzhnaya OV, Chernogor L, Krasko A, Schröder HC (2009) Symbiotic interaction between dinoflagellates and the demosponge Lubomirskia baikalensis. Aquaporin-mediated glycerol transport. Prog Mol Subcell Biol 47:145–170

    Article  PubMed  Google Scholar 

  • Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Li S, Battershill CN, Duckworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25

    Article  PubMed  CAS  Google Scholar 

  • Nickel M, Brümmer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J Biotechnol 100:147–159

    Article  PubMed  CAS  Google Scholar 

  • Nickel M, Leininger S, Proll G, Brümmer F (2001) Comparative studies on two potential methods for the biotechnological production of sponge biomass. J Biotechnol 92:169–178

    Article  PubMed  CAS  Google Scholar 

  • Osinga R, Tramper J, Wijffels RH (1999) Cultivation of marine sponges. Mar Biotechnol 1:509–532

    Article  PubMed  CAS  Google Scholar 

  • Pomponi SA (1999) The bioprocess-technological potential of the sea. J Biotechnol 70:5–13

    Article  CAS  Google Scholar 

  • Pomponi SA (2006) Biology of the Porifera: cell culture. Can J Zool 84:167–174

    Article  CAS  Google Scholar 

  • Pomponi SA, Willoughby R (1994) Sponge cell culture for the production of bioactive metabolites. In: van Soest R, van Kempen TMG, Braekman JC (eds) Sponges in time and space. Balkema, Rotterdam, pp 395–400

    Google Scholar 

  • Pomponi SA, Willoughby R, Kaighn ME, Wright AE (1997) Developments of techniques for in vitro production of bioactive natural products from marine sponges. In: Maramorosch K, Mitsuhashi J (eds) Invertebrate cell culture: novel directions and biotechnology applications. Science Publishers, USA, pp 231–237

    Google Scholar 

  • Rezvoj PD (1936) Freshwater sponges Fam. Spongillidae & Lubomirskiidae, vol. 2. Fauna URSS Academie Sciences URSS, Moscow

    Google Scholar 

  • Rinkevich B (1999) Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 70:133–153

    Article  CAS  Google Scholar 

  • Rinkevich B (2005) Marine invertebrate cell cultures: new millennium. Mar Biotechnol 7:429–439

    Article  PubMed  CAS  Google Scholar 

  • Sand-Jensen K, Pedersen MF (1994) Photosynthesis by symbiotic algae in the freshwater sponge, Spongilla lacustris. Limnol Oceanogr 39(3):551–561

    Article  CAS  Google Scholar 

  • Sipkema D, Van Wielink R, Van Lammeren AAM, Tramper RJ, Osinga RH, Wijffels RH (2003) Primmorphs from seven marine sponges: formation and structure. J Biotechnol 100:127–139

    Article  PubMed  CAS  Google Scholar 

  • Tsujii S, Rinehart KL, Gunasekera SP, Kashman Y, Cross S, Lui MS, Pomponi SA, Diaz MC (1988) Topsentin, bromotopsentin and dihydroxybromotopsentin: antiviral and antitumor bis(indolyl)imidazoles from Caribbean deep-sea sponges of the family Halichondriidae. Structural and synthetic studies. J Org Chem 53:5446–5453

    Article  CAS  Google Scholar 

  • Valisano L, Bavestrello G, Giovine M, Arillo A, Cerrano C (2006) Seasonal production of primmorphs from the marine sponge Petrosia ficiformis (Poiret, 1789) and new culturing approaches. J Exp Mar Biol Ecol 337:171–177

    Article  Google Scholar 

  • Wiens M, Belikov SI, Kaluzhnaya OV, Adell T, Schroder HC, Perovic-Ottstadt S, Kaandorp JA, Müller WEG (2008) Regional and modular expression of morphogenetic factors in the demosponge Lubomirskia baikalensis. Micron 39:447–460

    Article  PubMed  CAS  Google Scholar 

  • Wilson HV (1907) On phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245–258

    Article  Google Scholar 

  • Zhang W, Zhang X, Cao X, Xu J, Zhao Q, Yu X, Jin M, Deng M (2003a) Optimizing the sponge Stylotella agminata formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminata (Ridley). J Biotechnol 100:161–168

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Cao X, Zhang W, Yu X, Jin M (2003b) Primmorphs from archaeocytes-dominant cell population of the sponge Hymeniacidon perleve: improved cell proliferation and spiculogenesis. Biotechnol Bioeng 84:583–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance of Daria Tokina (Zoological Institute RAS, St. Petersburg, Russia) for his technical help and Tracey Edwards for improving the English. This work was supported by RFBR, grant nos. 07-04-00103a, 09-04-00337, European Commission 6th Framework Programme (project—on Research, Technological Development and Demonstration NMP4-CT-2006-031541), and European Marie Curie Mobility Programme (fellowship of A. Ereskovsky, MIF1-CT-2006-040065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubov I. Chernogor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernogor, L.I., Denikina, N.N., Belikov, S.I. et al. Long-Term Cultivation of Primmorphs from Freshwater Baikal Sponges Lubomirskia baikalensis . Mar Biotechnol 13, 782–792 (2011). https://doi.org/10.1007/s10126-010-9340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9340-9

Keywords