Marine Biotechnology

, Volume 13, Issue 3, pp 527–535 | Cite as

Stress-Induced Changes in Optical Properties, Pigment and Fatty Acid Content of Nannochloropsis sp.: Implications for Non-destructive Assay of Total Fatty Acids

  • Alexei Solovchenko
  • Inna Khozin-Goldberg
  • Lee Recht
  • Sammy Boussiba
Original Article

Abstract

In order to develop a practical approach for fast and non-destructive assay of total fatty acid (TFA) and pigments in the biomass of the marine microalga Nannochloropsis sp. changes in TFA, chlorophyll, and carotenoid contents were monitored in parallel with the cell suspension absorbance. The experiments were conducted with the cultures grown under normal (complete nutrient f/2 medium at 75 μmol PAR photons/(m2 s)) or stressful (nitrogen-lacking media at 350 μmol PAR photons/(m2 s)) conditions. The reliable measurement of the cell suspension absorbance using a spectrophotometer without integrating sphere was achieved by deposition of cells on glass–fiber filters in the chlorophyll content range of 3–13 mg/L. Under stressful conditions, a 30–50% decline in biomass and chlorophyll, retention of carotenoids and a build-up of TFA (15–45 % of dry weight) were recorded. Spectral regions sensitive to widely ranging changes in carotenoid-to-chlorophyll ratio and correlated changes of TFA content were revealed. Employing the tight inter-correlation of stress-induced changes in lipid metabolism and rearrangement of the pigment apparatus, the spectral indices were constructed for non-destructive assessment of carotenoid-to-chlorophyll ratio (range 0.3–0.6; root mean square error (RMSE) = 0.03; r2 = 0.93) as well as TFA content of Nannochloropsis sp. biomass (range 5.0–45%; RMSE = 3.23 %; r2 = 0.89) in the broad band 400–550 nm normalized to that in chlorophyll absorption band (centered at 678 nm). The findings are discussed in the context of real-time monitoring of the TFA accumulation by Nannochloropsis cultures under stressful conditions.

Keywords

Carotenoids Microalgal biotechnology Nannochloropsis Photoadaptation Non-destructive assay 

Abbreviations

Car

Carotenoid(s)

Chl

Chlorophyll(s)

DW

Biomass dry weight

IS

Integrating sphere

PFD

Photon Flux Density

(T)FA

(Total) fatty acids

References

  1. Borowitzka M, Siva C (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J Appl Phycol 19:567–590CrossRefGoogle Scholar
  2. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117CrossRefGoogle Scholar
  3. Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47CrossRefGoogle Scholar
  4. Cohen Z, Norman H, Heimer Y (1993) Potential use of substituted pyridazinones for selecting polyunsaturated fatty acid overproducing cell lines of algae. Phytochem 32:259–264CrossRefGoogle Scholar
  5. Elsey D, Jameson D, Raleigh B, Cooney M (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68:639–642CrossRefGoogle Scholar
  6. Fabregas J, Dominguez A, Maseda A, Otero A (2003) Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol 61:545–551PubMedGoogle Scholar
  7. Falkowski PG, Laroche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14CrossRefGoogle Scholar
  8. Fisher T, Berner T, Iluz D, Dubinsky Z (1998) The kinetics of the photoacclimation response of Nannochloropsis sp. (Eustigmatophyceae): a study of changes in ultrastructure and PSU density. J Phycol 34:818–824CrossRefGoogle Scholar
  9. Flynn K, Davidson K, Cunningham A (1993) Relations between carbon and nitrogen during growth of Nannochloropsis oculata (Droop) Hibberd under continuous illumination. New Phytol 125:717–722CrossRefGoogle Scholar
  10. Gitelson A, Qiuang H, Richmond A (1996) Photic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensis. Appl Environ Microbiol 62:1570–1573PubMedGoogle Scholar
  11. Gitelson A, Grits Y, Etzion D, Ning Z, Richmond A (2000) Optical properties of Nannochloropsis sp and their application to remote estimation of cell mass. Biotechnol Bioeng 69:516–525PubMedCrossRefGoogle Scholar
  12. Guillard R, Ryther J (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbio 8:229–239CrossRefGoogle Scholar
  13. Hibberd D (1980) Eustigmatophytes. In: Cox E (ed) Phytoflagellates: developments in marine biology. Elsevier, New YorkGoogle Scholar
  14. Hodgson P, Henderson R, Sargent J, Leftley J (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture. J Appl Phycol 3:169–181CrossRefGoogle Scholar
  15. Jahnke L (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol B: Biol 48:68–74CrossRefGoogle Scholar
  16. Kobayashi M, Katsuragi T, Tani Y (2001) Enlarged and astaxanthin-accumulating cyst cells of the green alga Haematococcus pluvialis. J Biosci Bioeng 92:565–568PubMedCrossRefGoogle Scholar
  17. Lubzens E, Gibson O, Zmora O, Sukenik A (1995) Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133:295–309CrossRefGoogle Scholar
  18. Merzlyak MN, Naqvi KR (2000) On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis. J Photochem Photobiol B: Biol 58:123–129CrossRefGoogle Scholar
  19. Merzlyak M, Chivkunova O, Gorelova O, Reshetnikova I, Solovchenko A, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843CrossRefGoogle Scholar
  20. Merzlyak M, Chivkunova O, Maslova I, Naqvi K, Solovchenko A, Klyachko-Gurvich G (2008) Light absorption and scattering by cell suspensions of some cyanobacteria and microalgae. Russ J Plant Physiol 55:420–425CrossRefGoogle Scholar
  21. Mitchell B (1990) Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. Proc SPIE, Ocean Optics, X 1302:137–148Google Scholar
  22. Naqvi KR, Merzlyak MN, Melo TB (2004) Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations. Photochem Photobiol Sci 3:132–137PubMedCrossRefGoogle Scholar
  23. Oren A (2005) A century of Dunaliella research: 1905–2005. Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, And Eukarya, 493Google Scholar
  24. Owens T, Gallagher J, Alberte R (1987) Photosynthetic light harvesting function of violaxantin in Nannochloropsis spp. (Eustigmatophyceae). J Phycol 23:79–85Google Scholar
  25. Rabbani S, Beyer P, Lintig J, Hugueney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248PubMedCrossRefGoogle Scholar
  26. Renaud S, Parry D, Thinh L, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp., and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53CrossRefGoogle Scholar
  27. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedCrossRefGoogle Scholar
  28. Salguero A, De La Morena B, Vigara J, Vega JM, Vilchez C, Leуn R (2003) Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomol Eng 20:249–253PubMedCrossRefGoogle Scholar
  29. Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M (2008) Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa. Russ J Plant Physiol 55:455–462CrossRefGoogle Scholar
  30. Solovchenko A, Khozin-Goldberg I, Cohen Z, Merzlyak M (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21:361–366CrossRefGoogle Scholar
  31. Solovchenko A, Khozin-Goldberg I, Cohen Z, Boussiba S, Merzlyak M (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light. J Phycol 46:763-772Google Scholar
  32. Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356PubMedCrossRefGoogle Scholar
  33. Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. 1. J Phycol 25:686–692CrossRefGoogle Scholar
  34. Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar G (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59:1409–1418PubMedCrossRefGoogle Scholar
  35. Young E, Beardall J (2003) Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. J Phycol 39:897–905CrossRefGoogle Scholar
  36. Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331CrossRefGoogle Scholar
  37. Zou N, Richmond A (2000) Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). J Appl Phycol 12:349–354CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alexei Solovchenko
    • 1
  • Inna Khozin-Goldberg
    • 2
  • Lee Recht
    • 2
  • Sammy Boussiba
    • 2
  1. 1.Department of Biotechnology, Faculty of BiologyMoscow State UniversityMoscowRussia
  2. 2.The Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevMidreshet Ben-GurionIsrael

Personalised recommendations