Skip to main content

Advertisement

Log in

Marine Fungi Aspergillus sydowii and Trichoderma sp. Catalyze the Hydrolysis of Benzyl Glycidyl Ether

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Whole cells of the marine fungi Aspergillus sydowii Gc12, Penicillium raistrickii Ce16, P. miczynskii Gc5, and Trichoderma sp. Gc1, isolated from marine sponges of the South Atlantic Ocean (Brazil), have been screened for the enzymatic resolution of (±)-2-(benzyloxymethyl)oxirane (benzyl glycidyl ether; 1). Whole cells of A. sydowii Gc12 catalyzed the enzymatic hydrolysis of (R,S)-1 to yield (R)-1 with an enantiomeric excess (ee) of 24–46% and 3-(benzyloxy)propane-1,2-diol (2) with ee values <10%. In contrast, whole cells of Trichoderma sp. Gc1 afforded (S)-1 with ee values up to 60% and yields up to 39%, together with (R)-2 in 25% yield and an ee of 32%. This is the first published example of the hydrolysis of 1 by whole cells of marine fungi isolated from the South Atlantic Ocean. The hydrolases from the two studied fungi exhibited complementary regioselectivity in opening the epoxide ring of racemic 1, with those of A. sydowii Gc12 showing an (S) preference and those of Trichoderma sp. Gc1 presenting an (R) preference for the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  • Acros Organics (2006–2007) Handbook of fine chemicals. Acros Organics, Geel, Belgium

  • Assis LF, Kagohara E, Omori AT, Comasseto JV, Andrade LH, Porto ALM (2007) Deracemization of (RS)-1-[(4-methylselanyl)phenyl]ethanol and (RS)-1-[(4-ethylselanyl)phenyl]ethanol by strains of Aspergillus terreus. Food Technol Biotechnol 45:415–419

    CAS  Google Scholar 

  • Bommarius AS, Riebel BR (2004) Biocatalysis: fundamentals and applications, 1st edn. Wiley-VCH, Atlanta

    Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Da Silva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Technol 46:32–37

    Article  CAS  Google Scholar 

  • Botes AL, Weijers CAGM, Botes PJ, van Dyk MS (1999) Enantioselectivities of yeast epoxide hydrolases for 1,2-epoxides. Tetrahedron: Asymmetry 10:3327–3336

    Article  CAS  Google Scholar 

  • Bredikhina ZA, Akhatova FS, Zakharychev DV, Bredikhin AA (2008) Spontaneous resolution amongst chiral ortho-cyanophenyl glycerol derivatives: an effective preferential crystallization approach to a single enantiomer of the β-adrenoblocker bunitrolol. Tetrahedron Asymmetr 19:1430–1435

    Article  CAS  Google Scholar 

  • Caner H, Groner E, Levy L, Agranat I (2004) Trends in the development of chiral drugs. Drug Discov Today 9:105–110

    Article  PubMed  CAS  Google Scholar 

  • Comasseto JV, Assis LF, Andrade LH, Schoenlein-Crusius IH, Porto ALM (2006) Biotransformations of ortho-, meta- and para-aromatic nitrocompounds by strains of Aspergillus terreus: Reduction of ketones and deracemization of alcohols. J Mol Catal B Enzym 39:24–30

    Article  CAS  Google Scholar 

  • Da Costa CE, Comasseto JV, Crusius IHS, Andrade LH, Porto ALM (2007) Biotransformation of β-hydroxyphenyl selenides, diphenyldiselenide and benzeneseleninic acid by whole cells of Aspergillus terreus. J Mol Catal B Enzym 45:135–139

    Article  Google Scholar 

  • Drapeau GR, Matula TI, MacLeod RA (1966) Nutrition and metabolism of marine bacteria1 XV. Relation of Na+-activated transport to the Na+ requirement of a marine pseudomonad for growth. J Bacteriol 92:63–71

    PubMed  CAS  Google Scholar 

  • Egri G, Bálint J, Peredi R, Fogassy E, Novák L, Poppe L (2000) Lipase-catalyzed enantiotope selective acetylation of 2-acyloxypropane-1,3-diols. Influence of the acyl moiety on the selectivity. J Mol Catal B: Enzym 10:583–596

    Article  CAS  Google Scholar 

  • Faber K (2004) Biotransformations in organic chemistry: a textbook, 5th edn. Springer, Berlin

    Book  Google Scholar 

  • Fujino A, Asano M, Yamaguchi H, Shirasaka N, Sakoda A, Ilkunaka M, Obata R, Nishiyama S, Sugai T (2007) Bacillus subtilis epoxide hydrolase-catalyzed preparations of enantiopure 2-methylprtopane-1,2,3-triol monobenzyl ether and its application to expeditions synthesis of (R)-bicalutamide. Tetrahedron Lett 48:979–983

    Article  CAS  Google Scholar 

  • García-Arieta A, Abad-Santos F, Rodríguez-Martínez MA, Varas-Polo Y, Novalbos J, Laparidis N, Gallego-Sandín S, Orfanidis K, Torrado J (2005) An eutomer/distomer ratio near unity does not justify non-enantiospecific assay methods in bioequivalence studies. Chirality 17:470–475

    Article  PubMed  Google Scholar 

  • Gong P-F, Xu J-H (2005) Bio-resolution of a chiral epoxide using whole cells of Bacillus megaterium ECU1001 in a biphasic system. Enzyme Microbiol Technol 36:252–257

    Article  CAS  Google Scholar 

  • Kagohara E, Pellizari VH, Comasseto JV, Andrade LH, Porto ALM (2008) Biotransformations of substituted phenylethanols and acetophenones by environmental bacteria. Food Technol Biotechnol 46:381–387

    CAS  Google Scholar 

  • Kamal A, Chouhan G (2005) Chemoenzymatic synthesis of calcilytic agent NPS-2143 employing a lipase-mediated resolution protocol. Tetrahedron Asymmetr 16:2784–2789

    Article  CAS  Google Scholar 

  • Kamal A, Sandbhor M, Shaik AA (2004) Chemoenzymatic synthesis of (S) and (R)-propanolol and sotalol employing one-pot lipase resolution protocol. Bioorg Med Chem Lett 14:4581–4583

    Article  PubMed  CAS  Google Scholar 

  • Keppler AF, Porto ALM, Schoenlein-Crusius IH, Comasseto JV, Andrade LH (2005) Enzymatic evaluation of different Aspergillus strains by biotransformation of cyclic ketones. Enzyme Microb Technol 36:967–975

    Article  CAS  Google Scholar 

  • Kogure K (1998) Bioenergetics of marine bacteria. Curr Opin Biotechnol 9:278–282

    Article  PubMed  CAS  Google Scholar 

  • Kotik M, Brichac J, Kyslík P (2005) Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives. J Biotechnol 120:364–375

    Article  PubMed  CAS  Google Scholar 

  • MacLeod RA (1965) The question of the existence of specific marine bacteria. Bacteriol Rev 29:9–23

    PubMed  CAS  Google Scholar 

  • Maher TJ, Johnson DA (2004) Review of chirality and its importance in pharmacology. Drug Dev Res 24:149–156

    Article  Google Scholar 

  • Mischitz M, Kroutil W, Wandel U, Faber K (1995) Asymmetric microbial hydrolysis of epoxides. Tetrahedron Asymmetr 6:1261–1272

    Article  CAS  Google Scholar 

  • Piovan L, Capelari M, Andrade LH, Comasseto JV, Porto ALM (2007) Biocatalytic reduction of a racemic selenocyclohexanone by Brazilian basidiomycetes. Tetrahedron Asymmetr 18:1398–1402

    Article  CAS  Google Scholar 

  • Piovan L, Kagohara E, Ricci LC, Keppler AF, Capelari M, Andrade LH, Comasseto JV, Porto ALM (2008) Chemoselective screening for the reduction of a chiral functionalised (+/−)-2-(phenylthio)cyclohexanone by whole cells of Brazilian micro-organisms. Tetrahedron Asymmetr 19:2385–2389

    Article  CAS  Google Scholar 

  • Raminelli C, Kagohara E, Pellizari VH, Comasseto JV, Andrade LH, Porto ALM (2007) Biotransformations of Mannich bases and propiophenones by Brazilian microorganisms and enzymatic resolution of phenylpropanols by lipase from Candida antarctica (Novozym 435). Enzyme Microb Technol 40:362–369

    Article  CAS  Google Scholar 

  • Ricci LC, Comasseto JV, Andrade LH, Capelari M, Cass QB, Porto ALM (2005) Biotransformations of aryl alkyl sulfides by whole cells of white-rot Basidiomycetes. Enzyme Microb Technol 36:937–946

    Article  CAS  Google Scholar 

  • Rocha LC, Ferreira HV, Pimenta EF, Berlinck RGS, Seleghim MHR, Javaroti DCD, Sette LD, Bonugli RC, Porto ALM (2009) Bioreduction of alpha-chloroacetophenone by whole cells of marine fungi. Biotechnol Lett 31:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Rocha LC, Ferreira HV, Pimenta EF, Berlinck RGS, Rezende MOO, Landgraf MD, Seleghim MHR, Sette LD, Porto ALM (2010) Biotransformation of α-bromoacetophenones by the marine fungus Aspergillus sydowii. Marine Biotechnol. doi:10.1007/s10126-009-9241-y

  • Simeó Y, Faber K (2006) Selectivity enhancement of enantio- and stereo-complementary epoxide hydrolases and chemo-enzymatic deracemization of (±)-2-methylglycidyl benzyl ether. Tetrahedron Asymmetr 17:402–409

    Article  Google Scholar 

  • Steinrieber A, Osprian I, Mayer SF, Orru RVA, Faber K (2000) Enantioselective hydrolysis of functionalized 2,2-disubstituted oxiranes with bacterial epoxide hydrolases. Eur J Org Chem 2000:3703–3711

    Article  Google Scholar 

  • Sun F, Xu G, Wu J, Yang L (2007) New and facile preparation of tert-butyl (3R, 5S)-6-hydroxy-3,5-O-isopropylidene-3,5-dihydroxyhexanoate. Tetrahedron Asymmetr 18:2454–2461

    Article  CAS  Google Scholar 

  • van Loo B, Kingma J, Heyman G, Wittenaar A, Spelberg JHL, Sonke T, Janssen DB (2009) Improved enantioselective conversion of styrene epoxides and meso-epoxides through epoxide hydrolases with a mutant nucleophilic-flanking residue. Enzyme Microbiol Technol 44:145–153

    Article  Google Scholar 

  • Vogel AI (1989) Textbook of practical organic chemistry, 5th edn. Longmans, London

    Google Scholar 

  • Weijers CAGM (1997) Enantioselective hydrolysis of aryl, alicyclic and aliphatic epoxides by Rhodotorula glutinis. Tetrahedron Asymmetr 8:639–647

    Article  CAS  Google Scholar 

  • Wood EJF (1967) Microbiology of oceans and estuaries. Elsevier oceanographic series 3, 2nd edn. Elsevier, Barking, p 319 pp

    Google Scholar 

  • Xu Y, Xu J-H, Pan J, Tang Y-F (2004a) Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii: cell/substrate ratio influences the optical purity of (R)-epoxides. Biotechnol Lett 26:1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Xu J-H, Pan J, Zhao L, Zhang S-L (2004b) Biocatalytic resolution of nitro-substituted phenoxypropylene oxides with Trichosporon loubierii epoxide hydrolase and prediction of their enantiopurity variation with reaction time. J Mol Catal B Enzym 27:155–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. R.G.S. Berlinck (Instituto de Química de São Carlos–USP) for providing the marine fungal strains used in this investigation. The authors gratefully acknowledge the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grant no. 472663/2004-6 to ALMP) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grant no. 2006/54401-2 to ALMP and grant no. 05/60175-2 to RGSB, MHRS, LDS, and EFP). Thanks are also due to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and CNPq for grant scholarships to MPM and AMM, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luiz Meleiro Porto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, M.P., Mouad, A.M., Boschini, L. et al. Marine Fungi Aspergillus sydowii and Trichoderma sp. Catalyze the Hydrolysis of Benzyl Glycidyl Ether. Mar Biotechnol 13, 314–320 (2011). https://doi.org/10.1007/s10126-010-9302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9302-2

Keywords

Navigation