Skip to main content
Log in

Bacterial Community Dynamics in the Marine Sponge Rhopaloeides odorabile Under In Situ and Ex Situ Cultivation

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Cultivation of sponges is being explored to supply biomaterial for the pharmaceutical and cosmetics industries. This study assesses the impact of various cultivation methods on the microbial community within the sponge Rhopaloeides odorabile during: (1) in situ cultivation under natural environmental conditions, (2) ex situ cultivation in small flow-through aquaria and (3) ex situ cultivation in large mesocosm systems. Principal components analysis of denaturing gradient gel electrophoresis profiles indicated a stable microbial community in sponges cultured in situ (grown in the wild) and in sponges cultured ex situ in small flow-through aquaria over 12 weeks. In contrast, a shift in the microbial community was detected in sponges cultivated ex situ in large mesocosm aquaria for 12 months. This shift included (1) a loss of some stable microbial inhabitants, including members of the Poribacteria, Chloroflexi and Acidobacteria and (2) the addition of new microbes not detected in the wild sponges. Many of these acquired bacteria had highest similarity to known sponge-associated microbes, indicating that the sponge may be capable of actively selecting its microbial community. Alternatively, long-term ex situ cultivation may cause a shift in the dominant microbes that facilitates the growth of the more rare species. The microbial community composition varied between sponges cultivated in mesocosm aquaria with different nutrient concentrations and seawater chemistry, suggesting that these variables play a role in structuring the sponge-associated microbes. The high growth and symbiont stability in R. odorabile cultured in situ confirm that this is the preferred method of aquaculture for this species at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Becerro MA, Thacker RW, Turon X, Uriz MJ, Paul VJ (2003) Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia 135:91–101

    PubMed  Google Scholar 

  • Duckworth AR, Battershill CN (2003) Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221:311–329

    Article  Google Scholar 

  • Duckworth AR, Wolff CWW (2007) Bath sponge aquaculture in Torres Strait, Australia: effect of explant size, farming method and the environment on culture success. Aquaculture 271:188–195

    Article  Google Scholar 

  • Duckworth AR, Wolff CWW, Evans-Illidge EA (2009) Farming bath sponges in tropical Australia. World Aquaculture Workshops 40:20–22

    Google Scholar 

  • Evans-Illidge E, Webster NS, Duckworth A, Louden D, Whalan S, Bannister R, Brinkman R, Wolff C, De Nys R, Battershill C (2006) Palm Island aquaculture science. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogenetic Inference Package), Version 3.5c. Department of Genetics, University of Washington, Seattle

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    PubMed  CAS  Google Scholar 

  • Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113

    Article  CAS  Google Scholar 

  • Furnas MJ, Mitchell AW, Skuza M (1995) Nitrogen and phosphorus budgets for the central Great Barrier Reef shelf. Great Barrier Reef Marine Park Authority, Townsville

    Google Scholar 

  • Gerce B, Schwartz T, Voigt M, Rühle S, Kirchen S, Putz A, Proksch P, Obst U, Syldatk C, Hausmann R (2009) Morphological, bacterial, and secondary metabolite changes of Aplysina aerophoba upon long-term maintenance under artificial conditions. Microb Ecol 58:865–878

    Article  PubMed  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann F, Rapp HT, Reitner J (2006) Monitoring microbial community composition by fluorescence in situ hybridization during cultivation of the marine cold-water sponge Geodia barretti. Mar Biotechnol 8:373–379

    Article  PubMed  CAS  Google Scholar 

  • Isaacs LT, Kan J, Nguyen L, Videau P, Anderson MA, Wright TL, Hill RT (2009) Comparison of the bacterial communities of wild and captive sponge Clathria prolifera from the Chesapeake Bay. Mar Biotechnol 11:758–770

    Article  PubMed  CAS  Google Scholar 

  • Louden D, Whalan S, Evans-Illidge E, Wolff C, De Nys R (2007) An assessment of the aquaculture potential of the tropical sponges Rhopaloeides odorabile and Coscinoderma n. sp. Aquaculture 270:57–67

    Article  Google Scholar 

  • Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer K-H (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568

    Article  PubMed  CAS  Google Scholar 

  • Mohamed NM, Enticknap JJ, Lohr JE, Mcintosh SM, Hill RT (2008a) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222

    Article  CAS  Google Scholar 

  • Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT (2008b) Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microbiol 74:4133–4143

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Newbold RW, Jensen PR, Fenical W, Pawlik JR (1999) Antimicrobial activity of Caribbean sponge extracts. Aquat Microb Ecol 19:279–284

    Article  Google Scholar 

  • Newman DJ, Cragg GM (2006) Natural products from marine invertebrates and microbes as modulators of antitumor targets. Curr Drug Targets 7:279–304

    Article  PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  • Osinga R, Tramper J, Wijffels RH (1998) Cultivation of marine sponges for metabolite production: applications for biotechnology? Trends Biotechnol 16:130–134

    Article  CAS  Google Scholar 

  • Pawlik JR, Chanas B, Toonen RJ, Fenical W (1995) Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar Ecol Prog Ser 127:183–194

    Article  CAS  Google Scholar 

  • Pronzato R (1999) Sponge-fishing, disease and farming in the Mediterranean Sea. Aquat Conserv 9:485–493

    Article  Google Scholar 

  • Taylor MW, Schupp PJ, Dahllof I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130

    Article  PubMed  Google Scholar 

  • Thacker RW, Becerro MA, Lumbang WA, Paul VJ (1998) Allelopathic interactions between sponges on a tropical reef. Ecology 79:1740–1750

    Article  Google Scholar 

  • Thakur NL, Hentschel U, Krasko A, Pabel CT, Anil AC, MüLler WEG (2003) Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense. Aquat Microb Ecol 31:77–83

    Article  Google Scholar 

  • Thomas S, Anthony SL (2008) Technical operations and water quality in the Coral Reef Exhibit at Reef HQ Aquarium, Townsville, Australia. In: Leewis R, Janse M (eds) Advances in coral husbandry in public aquaria. Burgers Zoo, Arnhem

    Google Scholar 

  • Thoms C, Horn M, Wagner M, Hentschel U, Proksch P (2003) Monitoring microbial diversity and natural products profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 142:685–692

    CAS  Google Scholar 

  • Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha proteobacterium. Mar Biol 138:843–851

    Article  CAS  Google Scholar 

  • Webster NS, Watts JE, Hill RT (2001a) Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote 16S ribosomal RNA gene sequences from a Great Barrier Reef sponge. Mar Biotechnol 3:600–608

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Webb RI, Ridd MJ, Hill RT, Negri AP (2001b) The effects of copper on the microbial community of a coral reef sponge. Environ Microbiol 3:19–31

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001c) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Negri AP, Webb RI, Hill RT (2002) A spongin-boring alpha proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge, Rhopaloeides odorabile. Mar Ecol Prog Ser 232:305–309

    Article  Google Scholar 

  • Webster NS, Negri AP, Munro MM, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Webster NS, Cobb RE, Negri AP (2008) Temperature thresholds for bacterial symbiosis with a sponge. ISME J 2:830–842

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Taylor MW, Benham F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol. doi:10.1111/j.1462-2920.2009.02065.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole S. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, N.S., Cobb, R.E., Soo, R. et al. Bacterial Community Dynamics in the Marine Sponge Rhopaloeides odorabile Under In Situ and Ex Situ Cultivation. Mar Biotechnol 13, 296–304 (2011). https://doi.org/10.1007/s10126-010-9300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9300-4

Keywords

Navigation