Skip to main content
Log in

The Distribution of Extracellular Cellulase Activity in Marine Eukaryotes, Thraustochytrids

  • Short Communication
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Cellulolytic ability was evaluated in 19 strains of thraustochytrids, representing nine genera, using carboxymethylcellulose (CMC) as a substrate. Extracellular cellulolytic enzyme activity was determined in the culture supernatants during cell growth. CMC hydrolysis was observed in 14 out of the 19 strains examined. These belonged to the genera Aplanochytrium, Botryochytrium, Oblongichytrium, Parietichytrium, Schizochytrium, Sicyoidochytrium, Thraustochytrium and Ulkenia. On the other hand, cellulolytic enzyme activity was not detected in any strains belonging to the genus Aurantiochytrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bongiorni L, Pusceddu A, Danovaro R (2005) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305

    Article  Google Scholar 

  • Bremer GB (1995) Lower marine fungi (labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia 295:89–95

    Article  Google Scholar 

  • Bremer GB, Talbot G (1995) Cellulolytic enzyme activity in the marine protist Schizochytrium aggregatum. Bot Mar 38:37–41

    Article  CAS  Google Scholar 

  • Carder JH (1986) Detection and condition of cellulase by Congo Red staining of substrates in a cup plate diffusion assay. Anal Biochem 153:75–79

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Yukino T, Watanabe F, Miyamoto E, Nakano Y (2007) Effect of vitamin B12-enriched thraustochytrids on the population growth of rotifers. Biosci Biotechnol Biochem 71:222–225

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Fukuba T, Naganuma T (1999) Biomass of thraustochytrid protoctists in coastal water. Mar Ecol Prog Ser 189:27–33

    Article  CAS  Google Scholar 

  • Nagano N, Taoka Y, Honda D, Hayashi M (2009) Optimization of culture conditions for growth and docosahexaenoic acid production by a marine thraustochytrid, Aurantiochytrium limacinum mh0186. J Oleo Sci 58:623–628

    PubMed  CAS  Google Scholar 

  • Naganuma T, Takasugi H, Kimura H (1998) Abundance of thraustochytrids in coastal plankton. Mar Ecol Prog Ser 162:105–110

    Article  Google Scholar 

  • Raghukumar S, Balasubramanian R (1991) Occurrence of thraustochytrid fungi in corals and coral mucus. Indian J Mar Sci 20:176–181

    Google Scholar 

  • Raghukumar S, Raghukumar C (1999) Thraustochytrid fungoid protists in faecal pellets of the tunicate Pegea confoederata, their tolerance to deep-sea conditions and implication in degradation processes. Mar Ecol Prog Ser 190:133–140

    Article  Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183:113–131

    Article  Google Scholar 

  • Raghukumar S, Sathe-Pathak V, Sharma S, Raghukumar C (1995) Thraustochytrid and fungal component of marine detritus. III. Field studies on decomposition of leaves of the mangrove Rhizophora apiculata. Aquat Microb Ecol 9:117–125

    Article  Google Scholar 

  • Sathe-Pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus. I. Field studies on decomposition of the brown alga Sargassum cinereum. Indian J Mar Sci 22:159–167

    CAS  Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2009) Extracellular enzymes produced by marine eukaryotes, thraustochytrids. Biosci Biotechnol Biochem 73:180–182

    Article  PubMed  CAS  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211

    Article  CAS  Google Scholar 

  • Yokoyama R, Salleh B, Honda D (2007) Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18 S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience 48:329–341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Shinichi Sugimoto, Dr. Hitoshi Izumida, and Mr. Yuji Okita (Nippon Suisan Kaisha Ltd., Japan) for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagano, N., Matsui, S., Kuramura, T. et al. The Distribution of Extracellular Cellulase Activity in Marine Eukaryotes, Thraustochytrids. Mar Biotechnol 13, 133–136 (2011). https://doi.org/10.1007/s10126-010-9297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9297-8

Keywords

Navigation