Skip to main content
Log in

Culture of Explants from the Sponge Mycale cecilia to Obtain Bioactive Mycalazal-Type Metabolites

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Natural products with promising biomedical properties have been described from sponges, but the problem of supply is usually a limiting factor for their pharmacological evaluation. Mycale cecilia produces an array of metabolites containing a pyrrole-2-carbaldehyde moiety (e.g., mycalazals and mycalenitriles) that have shown activity as growth inhibitors of the human prostate carcinoma cell line LNcaP. This study shows that the culture of M. cecilia is a viable method to supply mycalazals while protecting the wild population. Small implants were bound to ceramic tiles, and after 3 to 4 days, the tissue samples formed a secure attachment. Subsequently, these explants were simultaneously cultured in their natural environment and in small tanks for 60 days. Sponges in the tanks were fed a diet consisting of a mixture of two microalgae (Tetraselmis sp. and Isochrysis sp.) and powdered yeast Saccharomyces cerevisiae. The final survival of the explants differed significantly between the two farming methods: It was higher in the natural environment (95 ± 7.07%; overall mean ± standard error) than in the enclosed system (65 ± 21.21%). Growth was also higher than in the tanks, and after 60 days, it increased to 207% in the sea and 65% in the tanks, which represented a daily increase of 3.5% and 1.5%, respectively. At the end of the trial, both the explants cultured in the sea and in the tanks retained the production of bioactive metabolites. The mean concentration of pyrrole-2-carbaldehyde derivatives in wild and cultured sponges was determined by 1H-NMR. These results demonstrate that in-sea aquaculture of M. cecilia is a viable method for supplying the amounts of mycalazal-type compounds needed to advance the studies on their bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdo DA, Battershill CN, Harvey ES (2006) Manipulation of environmental variables and the effect on the growth of Haliclona sp.: implications for open-water aquaculture. Mar Biol Res 2:326–332

    Article  Google Scholar 

  • Abdo DA, Motti CA, Battershill CN, Harvey ES (2007) Temperature and spatiotemporal variability of salicylihalamide A in the sponge Haliclona sp. J Chem Ecol 33:1635–1645

    Article  CAS  PubMed  Google Scholar 

  • Battershill CN, Page M (1996) Sponge aquaculture for drug production. Aquaculture Update Spring, pp. 5–6

  • Belarbi EH, Contreras Gómez A, Chisti Y, García Camacho F, Molina Grima E (2003a) Producing drugs from marine sponges. Biotechnol Adv 21:585–598

    Article  CAS  Google Scholar 

  • Belarbi EH, Ramírez Domínguez M, Cerón García MC, Contreras Gómez A, García Camacho F, Molina Grima E (2003b) Cultivation of explants of the marine sponge Crambe crambe in closed systems. Biomol Eng 20:333–337

    Article  CAS  Google Scholar 

  • Blunt JW, Copp BR, Hu W-P, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244 and previous reviews of this series

    Article  CAS  PubMed  Google Scholar 

  • Burres NS, Clement JJ (1989) Antitumor activity and mechanism of action of the novel marine natural products mycalamide-A and -B and onnamide. Cancer Res 49:2935–2940

    CAS  PubMed  Google Scholar 

  • Butler MS (2008) Natural product to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25:475–516

    Article  CAS  PubMed  Google Scholar 

  • Carballo JL, Hernández-Zanuy A, Naranjo S, Kukurtzü B, García Cagide A (1999) Recovery of Ecteinascidia turbinata Herman 1880 (Ascidiacea: Perophoridae) populations after different levels of harvesting on a sustainable basis. Bull Mar Sci 65(3):755–776

    Google Scholar 

  • Carballo JL, Naranjo S, Kukurtzü B, De La Calle F, Hernández-Zanuy A (2000) Production of Ecteinascidia turbinata (Ascidiacea: Perophoridae) for obtaining anticancer compounds. J World Aquac Soc 31(4):481–490

    Article  Google Scholar 

  • de Caralt S, Uriz MJ, Wijffels RH (2007) Cell culture from sponges: pluripotency and immortality. Trends Biotechnol 25:467–471

    Article  PubMed  Google Scholar 

  • de Voogd NJ (2007) The mariculture potential of the Indonesian reef-dwelling sponge Callyspongia (Euplacella) biru: growth, survival and bioactive compounds. Aquaculture 262:54–64

    Article  Google Scholar 

  • Duckworth AR (2003) Effect of wound size on the growth and regeneration of two temperate subtidal sponges. J Exp Mar Biol Ecol 287:139–153

    Article  Google Scholar 

  • Duckworth A, Battershill C (2003) Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221:311–329

    Article  Google Scholar 

  • Duckworth AR, Pomponi SA (2005) Relative importance of bacteria, microalgae and yeast for growth of the sponge Halichondria melanadocia (De Laubenfels, 1936): a laboratory study. J Exp Mar Biol Ecol 323:151–159

    Article  Google Scholar 

  • Duckworth AR, Samples GA, Wright AE, Pomponi SA (2003) In vitro culture of the tropical sponge Axinella corrugata (Demospongiae): effect of food cell concentration on growth, clearance rate, and biosynthesis of stevensine. Mar Biotechnol 5:519–527

    Article  CAS  PubMed  Google Scholar 

  • Duckworth AR, Battershill CN, Schiel DR (2004) Effects of depth and water flow on growth, survival and bioactivity of two temperate sponges cultured in different seasons. Aquaculture 242:237–250

    Article  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48 (and previous reviews of this series)

    CAS  PubMed  Google Scholar 

  • Frost TM (1980) Clearance rate determinations for the freshwater sponge Spongilla lacustris: effects of temperature, particle type and concentration, and sponge size. Arch Hydrobiol 90:330–356

    Google Scholar 

  • Fry WG (1971) The biology of larvae of Ophlitaspongia seriata from two North Wales populations. In: Crisp DJ (ed) Proceedings of the fourth European marine biology symposium. Cambridge University Press, Cambridge, pp 155–178

    Google Scholar 

  • Fusetani N, Yasumuro K, Matsunaga S, Hashimoto K (1989) Mycalolides A–C, hybrid macrolides of ulapualides and halichondramide, from a sponge of the genus Mycale. Tetrahedron Lett 30:2809–2812

    Article  CAS  Google Scholar 

  • Gerrodette T, Flechsig AO (1979) Sediment-induced reduction in the pumping rate of the tropical sponge Verongia lacunosa. Mar Biol 55:103–110

    Article  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 26–60

    Google Scholar 

  • Hadas E, Shpigel M, Ilan M (2005) Sea ranching of the marine sponge Negombata magnifica (Demospongiae, Latrunculiidae) as a first step for latrunculin B mass production. Aquaculture 244:159–169

    Article  CAS  Google Scholar 

  • Hood KA, West LM, Rouwé B, Northcote PT, Berridge MV, Wakefield SJ, Miller JH (2002) Peloruside A, a novel antimitotic agent with placitaxel-like microtubule stabilizing activity. Cancer Res 62:3356–3360

    CAS  PubMed  Google Scholar 

  • Huzil JT, Chik JK, Slysz GW, Freedman H, Tuszynski J, Taylor RE, Sackett DL, Schriemer DC (2008) A unique mode of microtubule stabilization induced by peloruside A. J Mol Biol 378:1016–1030

    Article  CAS  PubMed  Google Scholar 

  • Keyzers RA, Davies-Coleman MT (2005) Anti-inflammatory metabolites from marine sponges. Chem Soc Rev 34:355–365

    Article  CAS  PubMed  Google Scholar 

  • Klöppel A, Pfannkuchen M, Putz A, Proksch P, Brümmer F (2008) Ex situ cultivation of Aplysina aerophoba close to in situ conditions: ecological, biochemical and histological aspects. Mar Ecol 29:1–14

    Article  Google Scholar 

  • Matsunaga S, Sugawara T, Fusetani N (1998) New mycalolides from the marine sponge Mycale magellanica and their interconversion. J Nat Prod 61:1164–1167

    Article  CAS  PubMed  Google Scholar 

  • Mendola D (2003) Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol Eng 20:441–458

    Article  CAS  PubMed  Google Scholar 

  • Mendola D, Naranjo S, Duckworth AR, Osinga R (2006) The promise of aquaculture for delivering sustainable supplies of new drugs from the sea: examples from in-sea, and tank-based invertebrate culture projects from around the world. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, Norfolk, pp 22–72

    Google Scholar 

  • Mendola D, de Caralt S, Uriz MJ, Fred van den End JVL, Wijffels R (2008) Environmental flow regimes for Dysidea avara sponges. Mar Biotechnol 10:622–630

    Article  CAS  PubMed  Google Scholar 

  • Müller WE, Wimmer W, Schatton W, Böhm M, Batel R, Filic Z (1999) Initiation of an aquaculture of sponges for the sustainable production of bioactive metabolites in open systems: example, Geodia cydonium. Mar Biotechnol 1:569–579

    Article  PubMed  Google Scholar 

  • Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Li S, Battershill CN, Duckworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25

    Article  CAS  PubMed  Google Scholar 

  • Nakao Y, Yoshida S, Matsunaga S, Shindoh N, Terada Y, Nagai K, Yamashita JK, Ganesan A, van Soest RWM, Fusetani N (2006) Azumamides A–E: histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge Mycale izuensis. Angew Chem Int Ed 45:7553–7555

    Article  CAS  Google Scholar 

  • Naranjo SA, Kukurtçu HB, Barbero C, Martin S, Carballo JL (2001) Aquaculture of Ecteinascidia turbinata Herdman, 1880 as source of marine anticancer agents. In: Lambert C, Yokosawa H (eds) Biology of ascidians. Springer, Berlin, pp 355–360

    Google Scholar 

  • Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    Article  CAS  PubMed  Google Scholar 

  • Northcote PT, Blunt JW, Munro MHG (1991) Pateamine: a potent cyototoxin from the New Zealand marine sponge Mycale sp. Tetrahedron Lett 32:6411–6414

    Article  CAS  Google Scholar 

  • Ortega MJ, Zubía E, Sánchez MC, Salvá J, Carballo JL (2004) Structure and cytotoxicity of new metabolites from the sponge Mycale cecilia. Tetrahedron 60:2517–2524

    Article  CAS  Google Scholar 

  • Osinga R, Tramper J, Wijffels RH (1999) Cultivation of marine sponges. Mar Biotechnol 1:509–532

    Article  CAS  PubMed  Google Scholar 

  • Osinga R, Kleijn R, Groenendijk E, Niesink P, Tramper J, Wijffels RH (2001) Development of in vivo sponge cultures: particle feeding by the tropical sponge Pseudosuberites aff. andrewsi. Mar Biotechnol 3:544–554

    Article  CAS  PubMed  Google Scholar 

  • Osinga R, Belarbi EH, Molina Grima E, Tramper J, Wijffels RH (2003) Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor. J Biotechnol 100:141–146

    Article  CAS  PubMed  Google Scholar 

  • Page MJ, Northcote PT, Webb VL, Mackey S, Handley SJ (2005) Aquaculture trials for the production of biologically active metabolites in the New Zealand sponge Mycale hentscheli (Demospongiae: Poecilosclerida). Aquaculture 250:256–269

    Article  CAS  Google Scholar 

  • Pauli GF, Jaki BU, Lankin DC (2005) Quantitative 1H NMR: Development and potential of a method for natural products analysis. J Nat Prod 68:133–149

    Article  CAS  PubMed  Google Scholar 

  • Pomponi SA, Willoughby R (1994) Sponge cell culture for production of bioactive metabolites. In: van Soest RWM et al (eds) Sponges in time and space. Balkema, Rotterdam, pp 395–400

    Google Scholar 

  • Phuwapraisirisan P, Matsunaga S, van Soest RWM, Fusetani N (2002) Isolation of a new mycalolide from the marine sponge Mycale izuensis. J Nat Prod 65:942–943

    Article  CAS  PubMed  Google Scholar 

  • Romo D, Rzasa RM, Shea HA, Park K, Langenhan JM, Sun L, Akhiezer A, Liu JO (1998) Total synthesis and immunosuppressive activity of (−) pateamine A and related compounds of a β-lactam-based macrocyclization. J Am Soc 120:12237–12254

    Article  CAS  Google Scholar 

  • Rzasa RM, Romo D, Stirling DJ, Blunt JW, Munro MHG (1995) Structural and synthetic studies of the pateamines: synthesis and absolute configuration of the hydroxydienoate fragment. Tetrahedron Lett 36:5307–5310

    CAS  Google Scholar 

  • Salomon CE, Magarvey NA, Sherman DH (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Article  CAS  PubMed  Google Scholar 

  • Schaufelberger DE, Koleck MP, Beutler JA, Vatakis AM, Alvarado AB, Andrews P, Marzo LV, Muschik GM, Roach J, Ross JT, Lebherz WB, Reeves MP, Eberwein RM, Rodgers LL, Testerman RP, Snader KM, Forenza S (1991) The large-scale isolation of bryostatin 1 from Bugula neritina following current good manufacturing practices. J Nat Prod 54:1265–1270

    Article  CAS  PubMed  Google Scholar 

  • Sipkema D, Snijders APL, Schroen CGPH, Osinga R, Wijffels RH (2004) The life and death of sponge cells. Biotechnol Bioeng 85:239–247

    Article  CAS  PubMed  Google Scholar 

  • Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH (2005a) Marine sponges as pharmacy. Mar Biotechnol 7:142–162

    Article  CAS  PubMed  Google Scholar 

  • Sipkema D, Osinga R, Schatton W, Mendola D, Tramper J, Wijffels RH (2005b) Large-scale production of pharmaceuticals by marine sponges: sea, cell, or synthesis? Biotechnol Bioeng 90:201–222

    Article  CAS  PubMed  Google Scholar 

  • Thakur NL, Müller WEG (2004) Biotechnological potential of marine sponges. Curr Sci 86:1506–1512

    CAS  Google Scholar 

  • West LM, Northcote PT, Hood KA, Miller JH, Page MJ (2000a) Mycalamide D, a new cytotoxic amide from the New Zealand marine sponge Mycale species. J Nat Prod 63:707–709

    Article  CAS  PubMed  Google Scholar 

  • West LM, Northcote PT, Battershill CN (2000b) Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 65:445–449

    Article  CAS  PubMed  Google Scholar 

  • Wulff JL (2006) Resistance vs. recovery: morphological strategies of coral reef sponges. Funct Ecol 20:699–708

    Article  Google Scholar 

  • Yánez B (2004) Influencia de la temperatura sobre el crecimiento y la supervivencia de algunas esponjas marinas en condiciones de cultivo. MSc Instituto de Ciencias del Mar y Limnología-UNAM, 165 pp

Download references

Acknowledgments

JLC is grateful to the Programa de Apoyos para la Superación del Personal Académico (PASPA) de la DGAPA (UNAM) for providing a grant during a sabbatical stay in Spain. We thank Clara Ramírez Jáuregui for help with the literature. This research was supported in part by grants from the Ministerio de Educación y Ciencia (Spain)-FEDER (research project CTQ2004-02361) and Junta de Andalucía (FQM-169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Carballo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carballo, J.L., Yañez, B., Zubía, E. et al. Culture of Explants from the Sponge Mycale cecilia to Obtain Bioactive Mycalazal-Type Metabolites. Mar Biotechnol 12, 516–525 (2010). https://doi.org/10.1007/s10126-009-9235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9235-9

Keywords

Navigation