Skip to main content
Log in

Differential Gene Expression During Smoltification of Atlantic Salmon (Salmo salar L.): a First Large-Scale Microarray Study

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The life cycle of the Atlantic salmon (Salmo salar) involves a period of 1 to 3 years in freshwater followed by migration to the sea where the salmon undergoes rapid growth. In preparation for the marine environment, while still in freshwater, the salmon undergo a transformation from a freshwater dwelling parr to a saltwater adapted smolt, a process known as smoltification. The Atlantic salmon Transcriptome Analysis of Important Traits of Salmon/Salmon Genome Project (TRAITS/SGP) cDNA microarray was used to investigate how gene expression alters during smoltification. Genes differentially expressed during smoltification were identified by comparing gene expression profiles in smolt brain, gill, and kidney tissue samples with those of parr. Of the three tissues investigated, the number of differentially expressed genes was the greatest in gill. Many of the differentially expressed genes could be assigned to one of four main categories: growth, metabolism, oxygen transport, and osmoregulation. Quantitative polymerase chain reaction successfully confirmed the differential expression of seven of the upregulated genes. The TRAITS/SGP cDNA microarray was used to successfully demonstrate for the first time how gene expression mediates smoltification in the Atlantic salmon. Changes in gene expression observed in this study reflected the physiological and biochemical changes recorded by previous studies describing the parr–smolt transformation. This study significantly increases our knowledge of smoltification and will benefit future studies in this area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ágústsson T, Sundell K, Sakamoto T, Ando M, Björnsson BTh (2003) Pituitary gene expression of somatolactin, prolactin, and growth hormone during Atlantic salmon parr–smolt transformation. Aquaculture 222:229–238

    Article  Google Scholar 

  • Björnsson BTh (1997) The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem 17:9–24

    Article  Google Scholar 

  • Blake RL, Roberts FL, Saunders RL (1984) Parr–smolt transformation of Atlantic salmon (Salmo salar): activities of two respiratory enzymes and concentrations of mitochondria in the liver. Can J Fish Aquat Sci 41:199–203

    Article  CAS  Google Scholar 

  • Boeuf G (1993) Salmonid smolting: a pre-adaptation to the oceanic environment. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, London, pp 105–135

    Google Scholar 

  • Borstein P, Sage H (1980) Structurally distinct collagen types. Ann Rev Biochem 49:957–1003

    Article  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  CAS  PubMed  Google Scholar 

  • Brekken RA, Sage EH (2000) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19:815–827

    Article  Google Scholar 

  • Castagnola P, Moro G, Descalzi-Cancedda F, Cancedda R (1986) Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol 102:2310–2317

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1998) Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141:1277–1286

    Article  CAS  PubMed  Google Scholar 

  • Clarke WC, Withler RE, Shelbourn JE (1994) Inheritance of smolting pheotypes in backcrosses of hybrid stream-type X ocean-type Chinook salmon (Oncorhynchus tshawytscha). Estuaries 1A:13–25

    Article  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Conte FP (1969) Salt secretion. In: Hoar WS, Randall DJ (eds) Fish physiology volume I. Academic, New York, pp 241–292

    Google Scholar 

  • Da Cruz S, Xenarios I, Langridge J, Vilbois F, Parone PA, Martinou JC (2003) Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem 278:41566–41571

    Article  PubMed  Google Scholar 

  • D’Cotta H, Gallais C, Saulier B, Prunet P (1996) Comparison between parr and smolt Atlantic salmon (Salmo salar) α subunit gene expression of Na+/K+-ATPase in gill tissue. Fish Physiol Biochem 15:29–39

    Article  Google Scholar 

  • D’Cotta H, Valotaire C, Le Gac F, Prunet P (2000) Synthesis of gill Na+-K+-ATPase in Atlantic salmon smolts: differences in α-mRNA and α-protein levels. Am J Physiol Regul Integr Comp Physiol 278:R101–R110

    PubMed  Google Scholar 

  • Duguay SJ, Swanson P, Dickhoff WW (1994) Differential expression and hormonal regulation of alternatively spliced IGF-I mRNA transcripts in salmon. J Mol Endocrinol 12:25–37

    Article  CAS  PubMed  Google Scholar 

  • Ebbesson LOE, Ekström P, Ebbesson SOE, Stefansson SO, Holmqvist B (2003) Neural circuits and their structural and chemical reorganization in the light–brain–pituitary axis during parr–smolt transformation in salmon. Aquaculture 222:59–70

    Article  CAS  Google Scholar 

  • Evans DH (1984) The roles of gill permeability and transport mechanisms in euryhalinity. In: Hoar WS, Randall DJ (eds) Fish physiology volume XB. Academic, New York, pp 239–283

    Google Scholar 

  • FAO (2006) FISHSTAT Plus: universal software for fishery statistical time series. Version 2.3 2000. FAO Fisheries Department, Fishery Information, Data and Statistics Unit, Rome

  • Folmar LC, Dickhoff WW (1980) The parr–smolt transformation (smoltification) and seawater adaptation in salmonids. Aquaculture 21:1–37

    Article  CAS  Google Scholar 

  • Folmar LC, Dickhoff WW (1981) Evaluation of some physiological parameters as predictive indices of smoltification. Aquaculture 23:309–324

    Article  Google Scholar 

  • Foote CJ, Wood CC, Clarke WC, Blackburm J (1992) Circannual cycle of seawater adaptability in Oncorhynchus nerka: genetic differences between sympatric sockeye salmon and kokanee. Can J Fish Aquat Sci 49:99–109

    Article  Google Scholar 

  • Foskett JK, Scheffey C (1982) The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science 215:164–166

    Article  CAS  PubMed  Google Scholar 

  • Giles MA, Randall DJ (1980) Oxygenation characteristics of the polymorphic hemoglobins of coho salmon (Oncorhynchus kisutch) at different developmental stages. Comp Biochem Physiol 65:265–271

    Article  Google Scholar 

  • Giles MA, Vanstone WE (1976) Ontogenetic variation in the multiple hemoglobins of coho salmon (Oncorhynchus kisutch) and the effect of environmental factors on their expression. J Fish Res Board Can 33:1144–1149

    CAS  Google Scholar 

  • Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/EnaC channels needed for mechanosensation. Nature 415:1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Hardiman G, Gannon F (1996) Differential transferrin gene expression in Atlantic salmon (Salmo salar L) freshwater parr and seawater smolts. J Appl Ichthyol 12:43–47

    Article  Google Scholar 

  • Hickman CP, Trump BF (1969) The kidney. In: Hoar WS, Randall DJ (eds) Fish physiology volume I. Academic, New York, pp 91–239

    Google Scholar 

  • Higgins PJ (1985) Metabolic differences between Atlantic salmon Salmo salar parr and smolts. Aquaculture 45:33–53

    Article  Google Scholar 

  • Hoar WS (1988) The physiology of smolting salmonids. In: Hoar WS, Randall DJ (eds) Fish physiology volume XIB. Academic, San Diego, pp 275–343

    Google Scholar 

  • Johnsson JI, Clarke WC, Blackburn J (1994) Hybridisation with domesticated rainbow trout reduces seasonal variation in seawater adaptability of steelhead trout (Oncorhynchus mykiss). Aquaculture 121:73–77

    Article  Google Scholar 

  • Kiilerich P, Kristiansen K, Madsen SS (2007) Hormone receptors in gills of smolting Atlantic salmon, Salmo salar: expression of growth hormone, prolactin, mineralocorticoid and glucocorticoid receptors and 11ß-hydroxysteroid dehydrogenase type 2. Gen Comp Endocrinol 152:295–303

    Article  CAS  PubMed  Google Scholar 

  • Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 8:163–173

    CAS  PubMed  Google Scholar 

  • Langdon JS, Thorpe JE (1984) Response of the gill Na+, K+-ATPase activity, succinic dehydrogenase activity and chloride cells to saltwater adaptation in Atlantic salmon Salmo salar L., parr and smolt. J Fish Biol 24:323–331

    Article  CAS  Google Scholar 

  • Leaver MJ, Villeneuve LAN, Obach A, Jensen L, Bron JE, Tocher DR, Taggart JB (2008) Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genomics 9:299

    Article  PubMed  Google Scholar 

  • Lingrel JB (1992) Na, K-ATPase: isoform structure, function and expression. J Bioenerg Biomembranes 24:263–270

    CAS  Google Scholar 

  • Loretz CA, Collie NL, Richman NH, Bern HA (1982) Osmoregulatory changes accompanying smoltification in coho salmon. Aquaculture 28:67–74

    Article  Google Scholar 

  • Martin SA, Taggart JB, Seear P, Bron JE, Talbot R, Teale AJ, Sweeney GE, Høyheim B, Houlihan DF, Tocher DR, Secombes CJ (2007) Interferon type I and type II responses in an Atlantic salmon (Salmo salar) SHK-1 cell line using the salmon TRAITS/SGP microarray. Physiol Genom 32:33–44

    Article  CAS  Google Scholar 

  • McCartney TH (1976) Sodium–potassium dependent adenosine triphosphate activity in gills and kidneys of Atlantic salmon (Salmo salar). Comp Biochem Physiol 53:351–353

    Article  CAS  Google Scholar 

  • McCormick SD, Saunders RL, MacIntyre AD (1989a) Mitochondrial enzyme and Na+, K+-ATPase activity, and ion regulation during parr–smolt transformation of Atlantic salmon (Salmo salar). Fish Physiol Biochem 6:231–241

    Article  CAS  Google Scholar 

  • McCormick SD, Moyes CD, Ballantyne JS (1989b) Influence of salinity on the energetics of gill and kidney of Atlantic salmon (Salmo salar). Fish Physiol Biochem 6:243–254

    Article  Google Scholar 

  • Miller KM, Maclean N (2008) Teleost microarrays: development in a broad phylogenetic range reflecting diverse applications. J Fish Biol 72:2039–2050

    Article  CAS  Google Scholar 

  • Mobasheri A, Avila J, Cózar-Castellano I, Brownleader MD, Trevan M, Francis MJO, Lamb JF, Martín-Vasallo P (2000) Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91

    Article  CAS  PubMed  Google Scholar 

  • Moldave K (1985) Eukaryotic protein synthesis. Ann Rev Biochem 54:1109–1149

    Article  CAS  PubMed  Google Scholar 

  • Nichols KM, Edo AF, Wheeler PA, Thorgaard GH (2008) The genetic basis of smoltification-related traits in Oncorhynchus mykiss. Genetics 179:1559–1575

    Article  PubMed  Google Scholar 

  • O’Keeffe AM, Hubert S, Voisin M, Houeix B, Cotter D, Cairns MT (2008) Somatolactin mRNA expression during the parr–smolt transformation in hatchery-reared Atlantic salmon Salmo salar smolts. J Fish Biol 73:436–443

    Article  Google Scholar 

  • Pauly D (1981) The relationship between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Meeresforschung 28:251–282

    Google Scholar 

  • Prunet P, Boeuf G, Bolton JP, Young G (1989) Smoltification and seawater adaptation in Atlantic salmon (Salmo salar): plasma prolactin, growth hormone and thyroid hormones. Gen Comp Endocrinol 74:355–364

    Article  CAS  PubMed  Google Scholar 

  • Richards JG, Semple JW, Bystriansky JS, Schulte PM (2003) Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 206:4475–4486

    Article  CAS  PubMed  Google Scholar 

  • Sage H, Vernon RB, Funk SE, Everitt EA, Angello J (1989) SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca+2-dependent binding to the extracellular matrix. J Cell Biol 109:341–356

    Article  CAS  PubMed  Google Scholar 

  • Sargent JR, Thompson AJ, Bornancin M (1975) Activities and localization of succinic dehydrogenase and Na+/K+-activated adenosine triphosphate in the gills of freshwater and seawater eels (Anguilla anguilla). Comp Biochem Physiol B 51:75–79

    Article  CAS  PubMed  Google Scholar 

  • Seidelin M, Madsen SS (1999) Endocrine control of Na+, K+-ATPase and chloride cell development in brown trout (Salmo trutta): interaction of insulin-like growth factor-I with prolactin and growth hormone. J Endocrin 162:127–135

    Article  CAS  Google Scholar 

  • Sheridan MA, Allen WV, Kerstetter TH (1985a) Changes in the fatty acid composition of steelhead trout, Salmo gairdneri Richardson, associated with parr–smolt transformation. Comp Biochem Physiol B 80B:671–676

    Article  CAS  Google Scholar 

  • Sheridan MA, Woo NYS, Bern HA (1985b) Changes in the rates of glycogenesis, glycogenolysis, lipogenesis, and lipolysis in selected tissues of the coho salmon associated with parr–smolt transformation. J Exp Zool 236:35–44

    Article  CAS  PubMed  Google Scholar 

  • Shrimpton JM, McCormick SD (1998) Regulation of gill cytosolic corticosteroid receptors in juvenile Atlantic salmon: interaction effects of growth hormone with prolactin and triiodothyronine. Gen Comp Endocrinol 112:262–274

    Article  CAS  PubMed  Google Scholar 

  • Stewart DC, Middlemas SJ, Youngson AF (2006) Population structuring in Atlantic salmon (Salmo salar): evidence of genetic influence on the timing of smolt migration in sub-catchment stocks. Ecol Freshw Fish 15:552–558

    Article  Google Scholar 

  • Stradmeyer L (1994) Survival, growth and feeding of Atlantic salmon, Salmo salar L., smolts after transfer to seawater in relation to the failed smolt syndrome. Aquac Fish Manage 25:103–112

    Google Scholar 

  • Sullivan CV, Dickhoff WW, Mahnken CVW, Hershberger WK (1985) Changes in the hemoglobin system of the coho salmon Oncorhynchus kisutch during smoltification and triiodothyronine and propylthiouracil treatment. Comp Biochem Physiol 81:807–813

    Article  CAS  Google Scholar 

  • Sweeting RM, Wagner GF, McKeown BA (1985) Changes in plasma glucose, amino acid nitrogen and growth hormone during smoltification and seawater adaptation in coho salmon, Oncorhynchus kisutch. Aquaculture 45:185–197

    Article  CAS  Google Scholar 

  • Taggart JB, Bron JE, Martin SAM, Seear PJ, Høyheim B, Talbot R, Carmichael SN, Villeneuve LAN, Sweeney GE, Houlihan DF, Secombes CJ, Tocher DR, Teale AJ (2008) A description of the origins, design and performance of the TRAITS-SGP Atlantic salmon Salmo salar L. cDNA microarray. J Fish Biol 72:2071–2094

    Article  CAS  PubMed  Google Scholar 

  • Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    Article  CAS  PubMed  Google Scholar 

  • Vanstone WE, Roberts E, Tsuyuki H (1964) Changes in the multiple hemoglobin patterns of some Pacific salmon, genus Oncorhynchus, during the parr–smolt transformation. Can J Physiol Pharmacol 42:697–703

    CAS  PubMed  Google Scholar 

  • Wilkins NP (1968) Multiple hemoglobins of the Atlantic salmon (Salmo salar). J Fish Res Board Can 25:2651–2663

    CAS  Google Scholar 

  • Wynne JW, O’Sullivan MG, Cook MT, Stone G, Nowak BF, Lovell DR, Elliot NG (2008a) Transcriptome analyses of amoebic gill disease-affected Atlantic salmon (Salmo salar) tissues reveal localized host gene suppression. Mar Biotechnol 10:388–403

    Article  CAS  PubMed  Google Scholar 

  • Wynne JW, O’Sullivan MG, Stone G, Cook MT, Nowak BF, Lovell DR, Taylor RS, Elliot NG (2008b) Resistance to amoebic gill disease (AGD) is characterised by the transcriptional dysregulation of immune and cell cycle pathways. Dev Comp Immunol 32:1539–1560

    Article  CAS  PubMed  Google Scholar 

  • Zaugg WS, McLain LR (1970) Adenosine triphosphate activity in gills of salmonids: seasonal variations and salt water influence in coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol 35:587–596

    Article  CAS  Google Scholar 

  • Zaugg WS, McLain LR (1972) Changes in gill adenosine-triphosphate activity associated with parr–smolt transformation in steelhead trout, coho, and spring Chinook salmon. J Fish Res Board Can 29:167–171

    CAS  Google Scholar 

  • Zaugg WS, Wagner HH (1973) Gill ATPase activity related to parr–smolt transformation and migration in steelhead trout (Salmo gairdneri): influence of photoperiod and temperature. Comp Biochem Physiol B 45:955–965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by an Exploiting Genomics grant (72/EGA 17676) from the Biotechnology and Biological Sciences Research Council. The authors would like to thank the TRAITS/SGP consortium and ARK-Genomics for providing the cDNA microarrays and the Environment Agency Cynrig fish culture unit for supplying the Atlantic salmon. Thanks are also due to the two anonymous reviewers for their critical comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Seear.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

All features significantly (p < 0.01) differentially regulated more than twofold in gill tissue of smolts (DOC 145 kb)

Supplementary Table 2

All features significantly (p < 0.01) differentially regulated more than twofold in brain tissue of smolts (DOC 79 kb)

Supplementary Table 3

All features significantly (p < 0.01) differentially regulated more than twofold in kidney tissue of smolts (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seear, P.J., Carmichael, S.N., Talbot, R. et al. Differential Gene Expression During Smoltification of Atlantic Salmon (Salmo salar L.): a First Large-Scale Microarray Study. Mar Biotechnol 12, 126–140 (2010). https://doi.org/10.1007/s10126-009-9218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9218-x

Keywords

Navigation