Skip to main content
Log in

Identification of a Functional Splice Variant of 14-3-3E1 in Rainbow Trout

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The 14-3-3 protein family is a family of regulatory proteins involved in diverse cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. In this study, we report the identification and characterization of a new isoform of the rainbow trout 14-3-3E1 gene generated by alternative splicing. The new isoform contains an insertion of 48 nucleotides (from intron 5) in the coding region of 14-3-3E1 which results in the introduction of a premature stop codon between exon 5 and exon 6. Thus, the alternatively spliced form of 14-3-3E1 (14-3-3E1∆C17) lacks 17 amino acid residues at the C terminus encoded by the last exon (exon 6). Reverse-transcription polymerase chain reaction analysis revealed that the wild-type 14-3-3E1 (14-3-3E1wt) is ubiquitously expressed, while 14-3-3E1∆C17 shows tissue-specific as well as stage-specific expression during ovarian development and early embryogenesis. Analysis by yeast two-hybrid system demonstrated that 14-3-3E1∆17 interacts with a number of proteins including ATP synthase, ankyrin repeat domain 13b, cytochrome c subunit VIa, cytochrome c subunit VIb, 60S ribosomal protein L34, solute carrier family 17 member 6 (SLC17A6), troponin I, and an unknown protein. Although all of these proteins except for SLC17A6 also interact with 14-3-3E1wt, 14-3-3E1∆17 appears to have higher binding affinity with these proteins than 14-3-3E1wt. These findings suggest that alternative splicing affects the function and tissue-specific expression of 14-3-3E1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aihara Y, Mashima H, Onda H, Hisano S, Kasuya H, Hori T, Yamada S, Tomura H, Yamada Y, Inoue I, Kojima I, Takeda J (2000) Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J Neurochem 74:2622–2625

    Article  CAS  PubMed  Google Scholar 

  • Aoki H, Hayashi J, Moriyama M, Arakawa Y, Hino O (2000) Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J Virol 74:1736–1741

    Article  CAS  PubMed  Google Scholar 

  • Athwal GS, Huber SC (2002) Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J 29:119–129

    Article  CAS  PubMed  Google Scholar 

  • Besser J, Bagowski CP, Salas-Vidal E, van Hemert MJ, Bussmann J, Spaink HP (2007) Expression analysis of the family of 14-3-3 proteins in zebra fish development. Gene Expr Patterns 7:511–520

    Article  CAS  PubMed  Google Scholar 

  • Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47

    Article  CAS  PubMed  Google Scholar 

  • Bornke F (2005) The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system. J Plant Physiol 162:161–168

    Article  PubMed  Google Scholar 

  • Bunney TD, De Boer AH, Levin M (2003) Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis. Development 130:4847–4858

    Article  CAS  PubMed  Google Scholar 

  • Bunney TD, van Walraven HS, de Boer AH (2001) 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci U S A 98:4249–4254

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain LH, Roth D, Morgan A, Burgoyne RD (1995) Distinct effects of alpha-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J Cell Biol 130:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Chan HC, Wu WL, So SC, Chung YW, Tsang LL, Wang XF, Yan YC, Luk SC, Siu SS, Tsui SK, Fung KP, Lee CY, Waye MM (2000) Modulation of the Ca(2+)-activated Cl(−) channel by 14-3-3 epsilon. Biochem Biophys Res Commun 270:581–587

    Article  CAS  PubMed  Google Scholar 

  • Darling DL, Yingling J, Wynshaw-Boris A (2005) Role of 14-3-3 proteins in eukaryotic signaling and development. Curr Top Dev Biol 68:281–315

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Camino C, Risseeuw EP, Liu E, Crosby WL (2003) A high-throughput system for two-hybrid screening based on growth curve analysis in microtiter plates. Anal Biochem 316:171–174

    Article  CAS  PubMed  Google Scholar 

  • Dubois T, Rommel C, Howell S, Steinhussen U, Soneji Y, Morrice N, Moelling K, Aitken A (1997) 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J Biol Chem 272:28882–28888

    Article  CAS  PubMed  Google Scholar 

  • Fanger GR, Widmann C, Porter AC, Sather S, Johnson GL, Vaillancourt RR (1998) 14-3-3 proteins interact with specific MEK kinases. J Biol Chem 273:3476–3483

    Article  CAS  PubMed  Google Scholar 

  • Gohla A, Bokoch GM (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12:1704–1710

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O’Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T (2004) Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14:1436–1450

    Article  CAS  PubMed  Google Scholar 

  • Komiya Y, Kurabe N, Katagiri K, Ogawa M, Sugiyama A, Kawasaki Y, Tashiro F (2008) A novel binding factor of 14-3-3beta functions as a transcriptional repressor and promotes anchorage-independent growth, tumorigenicity, and metastasis. J Biol Chem 283:18753–18764

    Article  CAS  PubMed  Google Scholar 

  • Koskinen H, Krasnov A, Rexroad C, Gorodilov Y, Afanasyev S, Molsa H (2004) The 14-3-3 proteins in the teleost fish rainbow trout (Oncorhynchus mykiss). J Exp Biol 207:3361–3368

    Article  CAS  PubMed  Google Scholar 

  • Lalle M, Salzano AM, Crescenzi M, Pozio E (2006) The Giardia duodenalis 14-3-3 protein is post-translationally modified by phosphorylation and polyglycylation of the C-terminal tail. J Biol Chem 281:5137–5148

    Article  CAS  PubMed  Google Scholar 

  • Lau JM, Wu C, Muslin AJ (2006) Differential role of 14-3-3 family members in Xenopus development. Dev Dyn 235:1761–1776

    Article  CAS  PubMed  Google Scholar 

  • Liu KW, Huang B, Tan Y, Wu DM (2007) Study of interaction between PRAS40 and 14-3-3 proteins by using yeast two-hybrid system. Sheng Wu Gong Cheng Xue Bao 23:652–656

    CAS  PubMed  Google Scholar 

  • Luk SC, Ngai SM, Tsui SK, Fung KP, Lee CY, Waye MM (1999) In vivo and in vitro association of 14-3-3 epsilon isoform with calmodulin: implication for signal transduction and cell proliferation. J Cell Biochem 73:31–35

    Article  CAS  PubMed  Google Scholar 

  • Mackie S, Aitken A (2005) Novel brain 14-3-3 interacting proteins involved in neurodegenerative disease. Febs J 272:4202–4210

    Article  CAS  PubMed  Google Scholar 

  • Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398

    Article  CAS  PubMed  Google Scholar 

  • Meek SE, Lane WS, Piwnica-Worms H (2004) Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J Biol Chem 279:32046–32054

    Article  CAS  PubMed  Google Scholar 

  • Mhawech P (2005) 14-3-3 proteins—an update. Cell Res 15:228–236

    Article  CAS  PubMed  Google Scholar 

  • Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30:13–19

    Article  CAS  PubMed  Google Scholar 

  • Nagler JJ, Krisfalusi M, Cyr DG (2000) Quantification of rainbow trout (Oncorhynchus mykiss) estrogen receptor-alpha messenger RNA and its expression in the ovary during the reproductive cycle. J Mol Endocrinol 25:243–251

    Article  CAS  PubMed  Google Scholar 

  • Pelegri F (2003) Maternal factors in zebra fish development. Dev Dyn 228:535–554

    Article  CAS  PubMed  Google Scholar 

  • Perego L, Berruti G (1997) Molecular cloning and tissue-specific expression of the mouse homologue of the rat brain 14-3-3 theta protein: characterization of its cellular and developmental pattern of expression in the male germ line. Mol Reprod Dev 47:370–379

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Liu X, Qiao D, Martinez JD (2005) Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. Int J Cancer 113:359–363

    Article  CAS  PubMed  Google Scholar 

  • Qiu GF, Ramachandra RK, Rexroad CE 3rd, Yao J (2008) Molecular characterization and expression profiles of cyclin B1, B2 and Cdc2 kinase during oogenesis and spermatogenesis in rainbow trout (Oncorhynchus mykiss). Anim Reprod Sci 105:209–225

    Article  CAS  PubMed  Google Scholar 

  • Robinson K, Jones D, Patel Y, Martin H, Madrazo J, Martin S, Howell S, Elmore M, Finnen MJ, Aitken A (1994) Mechanism of inhibition of protein kinase C by 14-3-3 isoforms. 14-3-3 isoforms do not have phospholipase A2 activity. Biochem J 299(Pt 3):853–861

    CAS  PubMed  Google Scholar 

  • Shen W, Clark AC, Huber SC (2003) The C-terminal tail of Arabidopsis 14-3-3omega functions as an autoinhibitor and may contain a tenth alpha-helix. Plant J 34:473–484

    Article  CAS  PubMed  Google Scholar 

  • Shiga Y, Wakabayashi H, Miyazawa K, Kido H, Itoyama Y (2006) 14-3-3 protein levels and isoform patterns in the cerebrospinal fluid of Creutzfeldt-Jakob disease patients in the progressive and terminal stages. J Clin Neurosci 13:661–665

    Article  CAS  PubMed  Google Scholar 

  • Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H (2005) Function of alternative splicing. Gene 344:1–20

    Article  CAS  PubMed  Google Scholar 

  • Su TT, Parry DH, Donahoe B, Chien CT, O’Farrell PH, Purdy A (2001) Cell cycle roles for two 14-3-3 proteins during Drosophila development. J Cell Sci 114:3445–3454

    CAS  PubMed  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C, Jahn R (2001) Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J Neurosci 21:RC182

    CAS  PubMed  Google Scholar 

  • Truong AB, Masters SC, Yang H, Fu H (2002) Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins 49:321–325

    Article  CAS  PubMed  Google Scholar 

  • Tyler CR, Nagler JJ, Pottinger TG, Turner MA (1994) Effects of unilateral ovariectomy on recruitment and growth of follicles in the rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem 13:309–316

    Article  CAS  Google Scholar 

  • Watanabe K, Ma M, Hirabayashi K, Gurusamy N, Veeraveedu PT, Prakash P, Zhang S, Muslin AJ, Kodama M, Aizawa Y (2007) Swimming stress in DN 14-3-3 mice triggers maladaptive cardiac remodeling: role of p38 MAPK. Am J Physiol Heart Circ Physiol 292:H1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Won J, Kim DY, La M, Kim D, Meadows GG, Joe CO (2003) Cleavage of 14-3-3 protein by caspase-3 facilitates bad interaction with Bcl-x(L) during apoptosis. J Biol Chem 278:19347–19351

    Article  CAS  PubMed  Google Scholar 

  • Xu WF, Shi WM (2006) Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann Bot (Lond) 98:965–974

    Article  CAS  Google Scholar 

  • Yaffe MB (2002) How do 14-3-3 proteins work?—gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513:53–57

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Wang J, Zhang H (2002) An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J 29:193–202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by Hatch Funds (project no. 427) of the West Virginia Agricultural Experiment Station and USDA/ARS Cooperative Agreement No. 58-1930-5-537. It is published with the approval of the Director of the West Virginia Agriculture and Forestry Experiment Station as scientific paper no. 3039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanna, W., Rexroad, C.E. & Yao, J. Identification of a Functional Splice Variant of 14-3-3E1 in Rainbow Trout. Mar Biotechnol 12, 70–80 (2010). https://doi.org/10.1007/s10126-009-9201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9201-6

Keyword

Navigation