Skip to main content
Log in

Enriching Rotifers with “Premium” Microalgae. Nannochloropsis gaditana

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The nutritive quality of Nannochloropsis gaditana cultured semicontinuously with different daily renewal rates was tested as a diet for short-term enrichment of the rotifer Brachionus plicatilis. After 24 h, dramatic differences in the survival, dry weight, and biochemical composition of the rotifers depending on the renewal rate of microalgal cultures were observed. Survival after the feeding period increased with increasing renewal rates. Rotifers fed microalgae from low renewal rate, nutrient-deficient cultures showed low dry weight and organic contents very similar to those of the initial rotifers that were starved for 12 h before the start of the feeding period. On the contrary, rotifers fed nutrient-sufficient microalgal cells underwent up to twofold increases of dry weight and protein, lipid, and carbohydrate contents with regard to rotifers fed nutrient-depleted N. gaditana. Consequently, feed conversion rate decreased in these conditions, indicating a better assimilation of the microalgal biomass obtained at high renewal rates. No single microalgal biochemical parameter among those studied can explain the response of the filter feeder. Similarly to gross composition, EPA and n-3 contents in rotifers fed microalgae from nutrient-sufficient cultures were double than the contents found in rotifers fed nutrient-limited microalgae. In addition, very high positive correlations between the contents of EPA and n-3 in N. gaditana and B. plicatilis were observed. These results demonstrate that selecting the appropriate conditions of semicontinuous culture can strongly enhance the nutritional value of microalgae that is reflected in the growth and biochemical composition of the filter-feeder even in short exposure periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dinamics. Ecol lett 7:884–900

    Article  Google Scholar 

  • Aragão C, Conceição LEC, Dinis MT, Fyhn H-J (2004) Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture 234:429–445

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Brown MR, McCausland MA, Kovalski K (1998) The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture 165:281–293

    Article  Google Scholar 

  • Coutinho P (2008) La microalga marina Rhodomonas lens: optimización de las condiciones de cultivo y potencial biotecnológico. Ph. D. Thesis, Universidade de Santiago de Compostela. p 261

  • Dhert P (1996) Rotifers. In: Lavens P, Sorgeloos P (eds) Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper n° 361. FAO, Rome, pp 49–78

    Google Scholar 

  • Dhert P, Rombaut G, Suantika G (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200:129–146

    Article  Google Scholar 

  • Duerr EO, Molnar A, Sato V (1998) Cultured microalgae as aquaculture feeds. J Mar Biotechnol 7:65–70

    Google Scholar 

  • Fábregas J, Herrero C, Cabezas B, Abalde J (1985) Mass culture and biochemical variability of the marine microalga Tetraselmis suecica Kylin (Butch) with high nutrient concentrations. Aquaculture 49:231–244

    Article  Google Scholar 

  • Fábregas J, Patiño M, Arredondo-Vega BO, Tobar JL, Otero A (1995a) Renewal rate and nutrient concentration as tools to modify productivity and biochemical composition of cyclostat cultures of the marine microalga Dunaliella tertiolecta. Appl Microbiol Biotechnol 44:287–292

    Article  Google Scholar 

  • Fábregas J, Patiño M, Vecino E, Cházaro F, Otero A (1995b) Productivity and biochemical composition of cyclostat cultures of the marine microalga Tetraselmis suecica. Appl Microbiol Biotechnol 43:617–621

    Article  Google Scholar 

  • Fábregas J, Otero A, Morales ED, Arredondo-Vega BO, Patiño M (1998) Modification of the nutritive value of Phaeodactylum tricornutum for Artemia sp. in semicontinuous cultures. Aquaculture 169:167–176

    Article  Google Scholar 

  • Fábregas J, Otero A, Dominguez A, Patiño M (2001) Growth rate of the microalga Tetraselmis suecica changes the biochemical composition of Artemia species. Mar Biotechnol 3:256–263

    Article  PubMed  Google Scholar 

  • Ferreira M (2007) Optimización do valor nutritivo de microalgas mariñas para o enriquecemento e cultivo do rotífero Brachionus plicatilis. Ph. D. Thesis, p 267

  • Ferreira M, Maseda A, Fábregas J, Otero A (2008) Enriching rotifers with “premium” microalgae. Isochrysis aff. galbana clone T-ISO. Aquaculture 279:126–130

    Article  Google Scholar 

  • Flynn KJ, Garrido JL, Zapata M, Öpik H, Hipkin CR (1992) Changes in fatty acids, amino acids and carbon/nitrogen biomass during nitrogen starvation of ammonium- and nitrate-grown p. J Appl Phycol 4:95–104

    Article  CAS  Google Scholar 

  • Frolov AV, Pankov SL, Geradze KN, Pankova SA, Spektorova LV (1991) Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture 97:181–202

    Article  CAS  Google Scholar 

  • Fukusho K (1989) Biology and mass production of the rotifer, Brachionus plicatilis (1). Int J Aq Fish Technol 1:232–240

    Google Scholar 

  • Herbert D, Phipps PJ, Stranoe RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic Press, London, pp 209–344

    Chapter  Google Scholar 

  • Jensen TC, Verschoor AM (2004) Effects of food quality on life history of the rotifer Brachionus calyciflorus Pallas. Freshwater Biol 49:1138–1151

    Article  Google Scholar 

  • Jones RH, Flynn KJ (2005) Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 307:1457–1459

    Article  PubMed  CAS  Google Scholar 

  • Jones RH, Flynn KJ, Anderson TR (2002) Effect of food quality on carbon and nitrogen growth efficiency in the copepod Acartia tonsa. Mar Ecol, Prog Ser 235:147–156

    Article  Google Scholar 

  • Kochert G (1978) Carbohydrate determination by the phenol-sulfuric acid method. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, London, pp 95–97

    Google Scholar 

  • Lowry OH, Rosebrough HJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lubzens E, Gibson O, Zmora O, Sukenik A (1995) Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133:295–309

    Article  Google Scholar 

  • Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. J Lipid Res 7:574–576

    PubMed  CAS  Google Scholar 

  • Mitra A, Flynn KJ (2005) Predator-prey interactions: is “ecological stoichiometry” sufficient when good food goes bad? J Plankton Res 27(5):393–399

    Article  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Microbiol 12:527–534

    Google Scholar 

  • Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer berween primary producers and consumers. Nature 403:74–77

    Article  PubMed  Google Scholar 

  • Nordgreen A, Hamre K, Langdon C (2007) Development of lipid microbeads for delivery of lipids and water-soluble materials to Artemia. Aquaculture 273:614–623

    Article  CAS  Google Scholar 

  • Øie G, Olsen Y (1997) Protein and lipid content of the rotifer Brachionus plicatilis during variable growth and feeding condition. Hydrobiologia 358:251–258

    Article  Google Scholar 

  • Øie G, Makridis P, Reitan KI, Olsen Y (1997) Protein and carbon utilization of rotifers (Brachionus plicatilis) in first feeding of turbot larvae (Scophthalmus maximus L.). Aquaculture 153:103–122

    Article  Google Scholar 

  • Olsen Y, Rainuzzo JR, Vadstein O, Jensen A (1989) Kinetics of n-3 fatty acids in Brachionus plicatilis and changes in the food supply. Hydrobiologia 186/187:409–413

    Article  Google Scholar 

  • Otero A, Fábregas J (1997) Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture 159:111–123

    Article  CAS  Google Scholar 

  • Otero A, García D, Morales ED, Arán J, Fábregas J (1997) Manipulation of the biochemical composition of the eicosapentaenoic acid-rich microalga Isochrysis galbana in semicontinuous cultures. Biotechnol Appl Biochem 26:171–177

    CAS  Google Scholar 

  • Otero A, Domínguez A, Lamela T, García D, Fábregas J (1998) Steady-states of semicontinuous cultures of a marine diatom: effect of saturating nutrient concentrations. J Exp Mar Biol Ecol 227:23–34

    Article  CAS  Google Scholar 

  • Otero A, Patiño M, Domínguez A, Fábregas J (2002) Tailoring the nutritional composition of microalgae for aquaculture purposes—the use of semicontinuous culture techniques. World Aquac/ Aquac Eur 33:13–16

    Google Scholar 

  • Ponis E, Robert R, Parisi G (2003) Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquaculture 221:491–505

    Article  CAS  Google Scholar 

  • Ponis E, Parisi G, Le Coz J-R, Robert R, Zitelli GC, Tredici MR (2006) Effect of the culture system and culture technique on biochemical caracteristics of Pavlova lutheri and its nutritional value for Crassostrea gigas larvae. Aquac Nutr 12:322–329

    Article  CAS  Google Scholar 

  • Robert R, Trintignac P (1997) Substitutes for live microalgae in mariculture: a review. Aquat Living Res 10:315–327

    Article  Google Scholar 

  • Rodolfi L, Chini Zitelli G, Barsanti L, Rosati G, Tredici MR (2003) Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomol Eng 20:243–248

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez C, Pérez JA, Izquierdo MS, Cejas JR, Bolaños A, Lorenzo A (1996) Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period. Aquaculture 147:93–105

    Article  Google Scholar 

  • Rodríguez Rainuzzo J, Olsen Y, Rosenlund G (1989) The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis. Aquaculture 79:157–161

    Article  Google Scholar 

  • Rønnestad I, Tonheim SK, Fyhn HJ, Rojas-García CR, Kamisaka Y, Koven W, Finn RN, Terjesen BF, Barr Y, Conceiçao LEC (2003) The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture 227:147–164

    Article  CAS  Google Scholar 

  • Rothhaupt KO (1995) Algal nutrient limitation affects rotifer growth rate but not ingestion rate. Limnol Oceanog 40(7):1201–1208

    Article  CAS  Google Scholar 

  • Sato N, Murata N (1988) Membrane lipids. In: Parker L, Glazer A (eds) Cyanobacteria, methods enzymol 167. California Academic Press, San Diego, pp 251–259

    Chapter  Google Scholar 

  • Scott AP (1980) Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J Mar Biol Assoc UK 60:681–702

    Article  CAS  Google Scholar 

  • Seixas P, Rey-Méndez M, Valente L, Otero A (2008) Producing juvenile Artemia as prey for Octopus vulgaris paralarvae with different microalgal species of controlled biochemical composition. Aquaculture 283:83–91

    Article  CAS  Google Scholar 

  • Sick LV (1976) Nutritional effect of five species of marine algae on the growth, development and survival of the brine shrimp Artemia salina. Mar Biol 35:69–78

    Article  CAS  Google Scholar 

  • Sukenik A, Wahnon R (1991) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I. Isochrysis galbana. Aquaculture 97:61–72

    Article  CAS  Google Scholar 

  • Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692

    Article  CAS  Google Scholar 

  • Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117:313–326

    Article  CAS  Google Scholar 

  • Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol 29:69–78

    Article  CAS  Google Scholar 

  • Yúfera M, Pascual E, Guinea J (1993) Factors influencing the biomass of the rotifer Brachionus plicatilis in culture. Hydrobiologia 255/256:159–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Otero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, M., Coutinho, P., Seixas, P. et al. Enriching Rotifers with “Premium” Microalgae. Nannochloropsis gaditana . Mar Biotechnol 11, 585–595 (2009). https://doi.org/10.1007/s10126-008-9174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9174-x

Keywords

Navigation