Skip to main content
Log in

Application of Response Surface Methodology to Optimise the Antioxidant Activity of a Saithe (Pollachius virens) Hydrolysate

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to produce, by an enzymatic hydrolysis process at a pilot scale, a saithe (Pollachius virens) hydrolysate with a high antioxidant activity. Design of experiment methodology, based on laboratory-scale experiments, was used to obtain a behavioral reduced model that allows one to determine the optimal operating conditions maximizing the antioxidant activity. Two specifications were studied: the degree of hydrolysis and the antioxidant activity. The effects of the following hydrolysis parameters (temperature, pH, enzyme concentration, and operating time) were studied and presented as response surfaces. From these results, a multifactorial optimization was performed and the Pareto optimal set of efficient solutions was evaluated. The optimal conditions were tested at laboratory scale and then validated by comparison with tests carried out on a pilot plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler-Nissen J (1979) Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem 27(2):1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Adler-Nissen J (ed) (1986) In: Enzymatic hydrolysis of food proteins. Elsevier, New York

  • Amarowicz R, Shahidi F (1997) Antioxidant activity of peptide fractions of capelin protein hydrolysates. Food Chem 58(4):355–359

    Article  CAS  Google Scholar 

  • An H, Visessanguan W (2000) Recovery of enzymes from seafood processing wastes. In: Haard NF, Simpson E (eds) Seafood enzymes—utilization and influence on post harvest seafood quality. Marcel Decker, New York, pp 641–664

    Google Scholar 

  • Andrieux G (2004) La filière française des co-produits de la pêche et de l’aquaculture: état des lieux et analyse. Rapport OFIMER, Paris (www.ofimer.fr)

    Google Scholar 

  • AOAC (1995) Official methods of analysis. Association of Official Agriculture Chemists, Washington DC

    Google Scholar 

  • Aspmo SI, Horn SJ, Eijsink VGH (2005) Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochem 40:1957–1966

    Article  CAS  Google Scholar 

  • Benjakul S, Morrissey MT (1997) Protein hydrolysates from Pacific Whiting solid wastes. J Agric Food Chem 45:3423–3430

    Article  CAS  Google Scholar 

  • Bordenave S, Fruitier I, Ballandier I, Sannier F, Gildberg A, Batista I, Piot JM (2002) HPLC preparation of fish waste hydrolysate fractions. Effect on guinea pig ileum and ACE activity. Prep Biochem Biotechnol 32:65–77

    Article  PubMed  CAS  Google Scholar 

  • Byun HG, Kim SK (2001) Purification and characterization of angiotensin I converting enzyme (ACE) peptides from Alaska Pollack (Theragra chalcogramma) skin. Process Biochem 36(12):1155–1162

    Article  CAS  Google Scholar 

  • Cancre I, Ravallec R, Van Wormhoudt A, Stenberg E, Gildberg A, Le Gal Y (1999) Secretagogues and growth factors in fish and crustacean protein hydrolysates. Mar Biotechnol 1:489–494

    Article  PubMed  CAS  Google Scholar 

  • Chabeaud A, Vandanjon L, Jaouen P, Bourseau P, Delannoy C, Johannsson R, Thorkelsson G, Guérard F (2006) Evaluation of antioxidant activities in by-product hydrolysates, fractionation and concentration of active molecules using separation technologies (ultra- and nanofiltration technologies). In: Luten JB, Jacobsen C, Bekaert K, Saebo A, Oehlenschläger J (eds) Seafood research from fish to dish: quality, safety and processing of wild and farmed fish. Wageningen Academic, The Netherlands, pp 419–426

    Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K (1998) Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 46:49–53

    Article  PubMed  CAS  Google Scholar 

  • Diniz FM, Martin AM (1996) Use of response surface methodology to describe the combined effects of pH, temperature and E/S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle. Int J Food Sci Nutr 31:419–426

    CAS  Google Scholar 

  • Diniz FM, Martin AM (1997) Optimization of nitrogen recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias) protein, composition of the hydrolysates. Int J Food Sci Nutr 48:191–200

    Article  PubMed  CAS  Google Scholar 

  • Dong S, Zeng M, Wang D, Liu Z, Zhao Y, Yang H (2008) Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem 107(4):1485–1493

    Article  CAS  Google Scholar 

  • Dufossé L, De La Broise D, Guérard F (1997) Fish protein hydrolysates as nitrogen sources for microbial growth and metabolite production. Recent Res Dev Microbiol 1:365–381

    Google Scholar 

  • Guérard F (2007) Enzymatic extraction methods for by-product recovery. In: Shahidi F (ed) Maximising the value of marine by-products, Part 1: marine by-products characterisation, recovery and processing. Editions Woodhead, Great Britain, pp 107–143

    Google Scholar 

  • Guérard F, Dufossé L, De La Broise D, Binet A (2001) Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J Mol Catal B: Enzym 11:1051–1059

    Article  Google Scholar 

  • Guérard F, Sellos D, Le Gal Y (2005) Fish and shellfish upgrading, traceability. Adv Biochem Eng Biotechnol 96:127–163

    PubMed  Google Scholar 

  • Hirose M, Imaida K, Tamano S, Ito N (1994) Cancer chemoprevention by antioxidants. In: Ho CT, Huang MT, Osawa T (eds) Food phytochemicals for cancer prevention II. ACS, Washington, pp 122–132

    Google Scholar 

  • Je JY, Park PJ, Kim SK (2005) Antioxidant activity of a peptide isolated from Alaska pollock (Theragra chalcogramma) frame protein hydrolysate. Food Res Int 38:45–50

    Article  CAS  Google Scholar 

  • Jeon YJ, Byun HG, Kim SK (2000) Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem 35:471–478

    Article  CAS  Google Scholar 

  • Jun SY, Park PJ, Jung WK, Kim SK (2004) Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur Food Res Technol 219:20–26

    Article  CAS  Google Scholar 

  • Jung WK, Mendis E, Je JY, Park PJ, Son BW, Kim HC, Choi YK, Kim SK (2006) Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 94(1):26–32

    Article  CAS  Google Scholar 

  • Kim SK, Kim YT, Byun HG, Nam KS, Joo DS, Shahidi F (2001) Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J Agric Food Chem 49(4):1984–1989

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Je JY, Kim SK (2007) Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J Nutr Biochem 18(1):31–38

    Article  PubMed  CAS  Google Scholar 

  • Klompong V, Benjakul S, Kantachote D, Shahidi F (2007) Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 102:1317–1327

    Article  CAS  Google Scholar 

  • Klompong V, Benjakul S, Kantachote D, Hayes KD, Shahidi F (2008) Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme. Int J Food Sci Technol 43(6):1019–1026

    Article  CAS  Google Scholar 

  • Kristinsson HG, Rasco BA (2000a) Fish protein hydrolysates: production, biochemical, and functional properties. Crit Rev Food Sci Nutr 40:43–81

    Article  PubMed  CAS  Google Scholar 

  • Kristinsson HG, Rasco BA (2000b) Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J Agric Food Chem 48:657–666

    Article  PubMed  CAS  Google Scholar 

  • Kristinsson HG, Theodore AE, Ingadottir B (2007) Chemical processing methods for protein recovery from marine by-products and underutilized fish species. In: Shahidi F (ed) Maximising the value of marine by-products, Part 1: Marine by-products characterisation, recovery and processing. Editions Woodhead, Great Britain, pp 144–170

    Google Scholar 

  • Laroque D, Chabeaud A, Guérard F (2007) Antioxidant capacity of marine protein hydrolysates, Chapter 5. In: Bergé JP (ed) Fish and seafood by-products. Research Signpost, Trivandrum

    Google Scholar 

  • Lin L, Li BF (2006) Radical scavenging properties of protein hydrolysates from Jumbo flying squid (Dosidicus eschrichitii Steenstrup) skin gelatin. J Sci Food Agri 86(14):2290–2295

    Article  CAS  Google Scholar 

  • Li L, Wang J, Cui C, Jiang Y (2006) Artificial neural network for production of antioxidant peptides derived from bighead carp muscles with Alcalase. Food Technol Biotechnol 44:441–448

    CAS  Google Scholar 

  • Li B, Chen F, Wang X, Ji B, Wu Y (2007) Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry. Food Chem 102(4):1135–1143

    Article  CAS  Google Scholar 

  • Marco GJ (1968) A rapid method for evaluation of antioxidants. J Am Oil Chem Soc 45:594–598

    Article  CAS  Google Scholar 

  • Mendis E, Rajapakse N, Byun HG, Kim SK (2005) Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem 53:581–587

    Article  PubMed  CAS  Google Scholar 

  • Morales FJ, Jimenez-Perez J (2001) Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescense. Food Chem 72:119–125

    Article  CAS  Google Scholar 

  • Moure A, Dominguez H, Parajo JC (2006) Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem 41:447–456

    Article  CAS  Google Scholar 

  • Nagai T, Suzuki N, Nagashima T (2006) Antioxidative activities and angiotensin I-converting enzyme inhibitory activities of enzymatic hydrolysates from commercial kamaboko type samples. Food Sci Technol Int 12(4):335–346

    Article  CAS  Google Scholar 

  • Nilsang S, Lertsiri S, Suphantharika M, Assavanig A (2005) Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. J Food Eng 70:571–578

    Google Scholar 

  • Normah I, Jamilah B (2005) Optimization of hydrolysis conditions for the production of threadfin bream (Nemipterus japonicus) hydrolysate by Alcalase. J Muscle Food 16:87–102

    Article  CAS  Google Scholar 

  • Pihlanto A (2006) Antioxidative peptides derived from milk proteins. Int Dairy J 16:1306–1314

    Article  CAS  Google Scholar 

  • Rajapakse N, Mendis E, Byun HG, Kim SK (2005) Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J Nutr Biochem 16:562–569

    Article  PubMed  CAS  Google Scholar 

  • Ranathunga S, Rajapakse N, Kim SK (2006) Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). Eur Food Res Technol 222:310–315

    Article  CAS  Google Scholar 

  • Ravallec-Ple R, Gilmartin L, Van Wormhoudt A, Le Gal Y (2000) Influence of the hydrolysis process on the biological activities of protein hydrolysates from cod (Gadus morhua) muscle. J Sci Food Agric 80:2176–2180

    Article  CAS  Google Scholar 

  • Ravallec-Ple R, Charlot C, Pires C, Braga V, Batista I, Van Wormhoudt A, Le Gal Y, Fouchereau-Peron M (2001) The presence of bioactive peptides in hydrolysates prepared from processing waste of sardine (Sardina pilchardus). J Sci Food Agric 81:1120–1125

    Article  CAS  Google Scholar 

  • Ren J, Zhao M, Shi J, Wag J, Jiang Y, Cui C, Kakuda Y, Jun Xue S (2008) Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem 108(2):727–736

    Article  CAS  Google Scholar 

  • Saiga A, Tanabe S, Nishimura T (2003) Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem 51:3661–3667

    Article  PubMed  CAS  Google Scholar 

  • Sanakana S, Tachibana Y, Ishihara N, Juneja LR (2004) Antioxidant activity of egg-yolk protein hydrolyzates in a linoleic acid oxidation system. Food Chem 86:99–103

    Article  CAS  Google Scholar 

  • Simpson BK, Nayeri G, Yaylayan V, Ashie INA (1998) Enzymatic hydrolysis of shrimp meat. Food Chem 61:131–138

    Article  CAS  Google Scholar 

  • Steinhardt H, Beychok S (1964) Interaction of protein with hydrogen ions and other small ions and molecules. In: Neurath H (ed) The proteins, vol. 2. Academic, New York, pp 139–304

    Google Scholar 

  • Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11:128–131

    Article  PubMed  CAS  Google Scholar 

  • Sumaya-Martinez MT, Castillo-Morales A, Favela-Torres E, Huerta-Ochoa S, Prado-Baragan LA (2005) Fish protein hydrolysates from gold carp (Carassius auratus): I. A study of hydrolysis parameters using response surface methodology. J Sci Food Agric 85:98–104

    Article  CAS  Google Scholar 

  • Taylor T, Alasalvar C (2002) Improved utilisation of fish and shellfish waste. In: Alasalvar C, Taylor T (eds) Seafoods—quality, technology and nutraceutical applications. Springer, Berlin, pp 123–136

    Google Scholar 

  • Tessier B, Harscoat C, Farges B, Chevalot I, Goergen JL, Chenu S, Marc A, Marc I (2006) Procédé membranaire pour la production de fractions peptidiques biologiquement actives issues de protéines de colza. Récent Prog en Génie des Procédés 93:1–8

    Google Scholar 

  • Thiansilakul Y, Benjakul S, Shahidi F (2007) Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem 103:1385–1394

    Article  CAS  Google Scholar 

  • Venugopal V, Shahidi F (1995) Value-added products from underutilized fish species. Crit Rev Food Sci Nutr 35:431–453

    Article  PubMed  CAS  Google Scholar 

  • Wu HC, Chen HM, Shiau SY (2003) Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber australasicus). Food Res Int 36:949–957

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed within the PRIR N°304 Activemb-Région Bretagne, the integrated research project SEAFOODplus, contract no. FOOD-CT-2004-506359, and the INTEREG IIIB project VALBIOMAR. The partial financing by the Région Bretagne and the European Union is gratefully acknowledged. In addition, we thank Mr. Jean-Jacques Le Yeuc’h for reviewing the English language of this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vandanjon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chabeaud, A., Dutournié, P., Guérard, F. et al. Application of Response Surface Methodology to Optimise the Antioxidant Activity of a Saithe (Pollachius virens) Hydrolysate. Mar Biotechnol 11, 445–455 (2009). https://doi.org/10.1007/s10126-008-9158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9158-x

Keywords

Navigation