Skip to main content
Log in

Convergent Antifouling Activities of Structurally Distinct Bioactive Compounds Synthesized Within Two Sympatric Haliclona Demosponges

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A wide range of sessile and sedentary marine invertebrates synthesize secondary metabolites that have potential as industrial antifoulants. These antifoulants tend to differ in structure, even between closely related species. Here, we determine if structurally divergent secondary metabolites produced within two sympatric haliclonid demosponges have similar effects on the larvae of a wide range of benthic competitors and potential fouling metazoans (ascidians, molluscs, bryozoans, polychaetes, and sponges). The sponges Haliclona sp. 628 and sp. 1031 synthesize the tetracyclic alkaloid, haliclonacyclamine A (HA), and the long chain alkyl amino alcohol, halaminol A (LA), respectively. Despite structural differences, HA and LA have identical effects on phylogenetically disparate ascidian larvae, inducing rapid larval settlement but preventing subsequent metamorphosis at precisely the same stage. HA and LA also have similar effects on sponge, polychaete, gastropod and bryozoan larvae, inhibiting both settlement and metamorphosis. Despite having identical roles in preventing fouling and colonisation, HA and LA differentially affect the physiology of cultured HeLa human cells, indicating they have different molecular targets. From these data, we infer that the secondary metabolites within marine sponges may emerge by varying evolutionary and biosynthetic trajectories that converge on specific ecological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen R, van Soest R, Kong F (1996) 3-Alkylpiperidine alkaloids isolated from marine sponges in the order Haplosclerida. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Pergamon, Oxford, pp 301–355

    Chapter  Google Scholar 

  • Azumi K, Takahashi H, Miki Y, Fujie M, Usami T, Ishikawa H, Kitayama A, Satou Y, Ueno N, Satoh N (2003) Construction of a cDNA microarray derived from the ascidian Ciona intestinalis. Zool Sci 20:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Bakus GJ, Targett NM, Schulte BS (1986) Chemical ecology of marine organisms: an overview. J Chem Ecol 12:951–987

    Article  CAS  Google Scholar 

  • Carté BK (1996) Biomedical potential of marine natural products. BioScience 46:271–286

    Article  Google Scholar 

  • Charan RD, Garson MJ, Brereton IM, Willis AC, Hooper JNA (1996) Haliclonacyclamines A and B, cytotoxic alkaloids from the tropical marine sponge Haliclona sp. Tetrahedron 52:9111–9120

    Article  CAS  Google Scholar 

  • Chiba S, Sasaki A, Nakayama A, Takamura K, Satoh N (2004) Development of Ciona intestinalis juveniles (through 2nd ascidian stage). Zool Sci 21:285–298

    Article  PubMed  Google Scholar 

  • Clark RJ, Field KL, Charan RD, Garson MJ, Brereton IM, Willis AC (1998) The haliclonacyclamines, cytotoxic tertiary alkaloids from the tropical marine sponge Haliclona sp. Tetrahedron 54:8811–8826

    Article  CAS  Google Scholar 

  • Clark RJ, Garson MJ, Hooper JNA (2001) Antifungal alkyl amino alcohols from the tropical marine sponge Haliclona n.sp. J Nat Prod 64:1568–1571

    Article  PubMed  CAS  Google Scholar 

  • Counihan RT, McNamara DC, Souter DC, Jebreen EJ, Preston NP, Johnson CR, Degnan BM (2001) Pattern, synchrony and predictability of spawning of the tropical abalone, Haliotis asinina, from Heron Reef, Australia. Mar Ecol Prog Ser 213:193–202

    Article  Google Scholar 

  • Crisp DJ (1974) Factors influencing settlement of marine invertebrate larvae. In: Grant PT, Mackie AM (eds) Chemoreception in marine organisms. Academic, London, pp 177–265

    Google Scholar 

  • Cutignano A, Tramice A, De Caro S, Villani G, Cimino G, Fontana A (2003) Biogenesis of 3-alkylpyridine alkaloids in the marine mollusc Haminoea orbignyana. Angew Chem Int Ed 42:2633–2636

    Article  CAS  Google Scholar 

  • Degnan BM, Johnson CR (1999) Inhibition of settlement and metamorphosis of the ascidian Herdmania curvata by non-geniculate coralline algae. Biol Bull 197:332–340

    Article  PubMed  Google Scholar 

  • Degnan BM, Rohde PR, Lavin MF (1996) Normal development and embryonic gene activity of the ascidian Herdmania momus. Mar Freshw Res 47:543–551

    Article  CAS  Google Scholar 

  • Degnan BM, Souter D, Degnan SM, Long SC (1997) Induction of metamorphosis with potassium ions requires development of competence and an anterior signalling centre in the ascidian Herdmania momus. Dev Genes Evol 206:370–376

    Article  CAS  Google Scholar 

  • Degnan BM, Leys SP, Larroux C (2005) Sponge development and antiquity of animal pattern formation. Integr Comp Biol 45:335–341

    Article  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KEM, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Duriez PJ, Shah GM (1997) Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75:337–349

    Article  PubMed  CAS  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    PubMed  CAS  Google Scholar 

  • Fusetani N (1997) Marine natural products influencing larval settlement and metamorphosis of benthic invertebrates. Curr Org Chem 1:127–152

    CAS  Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104

    Article  PubMed  CAS  Google Scholar 

  • Garson MJ, Flowers AE, Webb RI, Charan RD, McCaffrey EJ (1998) A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by Percoll density gradient centrifugation. Cell Tissue Res 293:365–373

    Article  PubMed  CAS  Google Scholar 

  • Garson MJ, Clark RJ, Webb RI, Field KL, Charan RD, McCaffrey EJ (1999) Ecological roles of cytotoxic alkaloids: Haliclona n. sp., an unusual sponge/dinoflagellate association. Mem Queensl Mus 44:205–213

    Google Scholar 

  • Green KM, Russell BD, Clark RJ, Jones MK, Garson MJ, Skilleter GA, Degnan BM (2001) A sponge allelochemical induces ascidian settlement but inhibits metamorphosis. Mar Biol 140:355–363

    Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T (1996) Diversity and variability of plant secondary metabolism: a mechanistic view. Entomol Exp Appl 80:177–188

    Article  CAS  Google Scholar 

  • Haslam E (1986) Secondary metabolism—fact or fiction. Nat Prod Rep 3:217–249

    Article  CAS  Google Scholar 

  • Hinman VF, Degnan BM (2001) Homeobox genes, retinoic acid and the development and evolution of dual body plans in the ascidian Herdmania curvata. Am Zool 41:1–13

    Article  Google Scholar 

  • Imai KS, Hino K, Yagi K, Satoh N, Satou Y (2004) Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131:4047–4058

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Williams K, Degnan BM (2001) Suitability of Australian formulated diets for the aquaculture of the tropical abalone Haliotis asinina Linnaeus. J Shellfish Res 20:627–636

    Google Scholar 

  • Jackson D, Leys SP, Hinman VF, Woods R, Lavin MF, Degnan BM (2002) Ecological regulation of development: induction of marine invertebrate metamorphosis. Int J Dev Biol 46:679–686

    PubMed  CAS  Google Scholar 

  • Jackson DJ, Ellemor N, Degnan BM (2005) Correlating gene expression with larval competence, and the effect of age and parentage on metamorphosis in the tropical abalone Haliotis asinina. Mar Biol 147:681–697

    Article  Google Scholar 

  • Jebreen EJ, Counihan RT, Fielder DR, Degnan BM (2000) Synchronous oogenesis during the semilunar spawning cycle of the tropical abalone Haliotis asinina. J Shellfish Res 19:845–851

    Google Scholar 

  • Konig GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006) Natural products from marine organisms and their associated microbes. Chem Bio Chem 7:229–238

    PubMed  Google Scholar 

  • Konopleva M, Zhao SR, Xie Z, Segall H, Younes A, Claxton DF, Estrov Z, Kornblau SM, Andreeff M (1999) Apoptosis—molecules and mechanisms. Adv Exp Med Biol 457:217–236

    PubMed  CAS  Google Scholar 

  • Kott P (1985) The Australian Ascidiacea. Part 1: Phlebobranchia and Stolidobranchia. Mem Queensl Mus 23:11–440

    Google Scholar 

  • Leys SP, Degnan BM (2001) Cytological basis of photoresponsive behaviour in a sponge larva. Biol Bull 201:323–338

    Article  PubMed  CAS  Google Scholar 

  • Leys SP, Degnan BM (2002) Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invertebr Biol 121:171–189

    Google Scholar 

  • Livett BG, Gayler KR, Khalil Z (2004) Drugs from the sea: conopeptides as potential therapeutics. Curr Med Chem 11:1715–1723

    PubMed  CAS  Google Scholar 

  • Luckner M (1990) Secondary metabolism in microorganisms, plants and animals. VEB Gustav Fischer, Jena

    Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis—an overview of cell-death. Am J Pathol 146:3–15

    PubMed  CAS  Google Scholar 

  • Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Shangxiao L, Battershill CN, Duckworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25

    Article  PubMed  CAS  Google Scholar 

  • Nakayama A, Satou Y, Satoh N (2001) Isolation and characterization of genes that are expressed during Ciona intestinalis metamorphosis. Dev Genes Evol 211:184–189

    Article  PubMed  CAS  Google Scholar 

  • Nakayama A, Satou Y, Satoh N (2002) Further characterization of genes expressed during Ciona intestinalis metamorphosis. Differentiation 70:429–437

    Article  PubMed  CAS  Google Scholar 

  • Paul VJ (1992) Ecological roles of marine natural products. Cornell Publishing Associates, New York

    Google Scholar 

  • Paul V, Puglisi M, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23:153–180

    Article  PubMed  CAS  Google Scholar 

  • Pawlik JR (1986) Chemical induction of larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Polychaeta: Sabellariidae). Mar Biol 91:59–68

    Article  CAS  Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol Annu Rev 30:273–335

    Google Scholar 

  • Pawlik JR, Faulkner DJ (1986) Specific free fatty acids induce larval settlement and metamorphosis of the reef-building tube worm Phragmatopoma californica (Fewkes). J Exp Mar Biol Ecol 102:301–310

    Article  CAS  Google Scholar 

  • Piel J (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39–50

    Article  PubMed  CAS  Google Scholar 

  • Porter JW, Targett NM (1988) Allelochemical interactions between sponges and corals. Biol Bull 175:230–239

    Article  Google Scholar 

  • Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG (2000) Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 11:2069–2083

    PubMed  CAS  Google Scholar 

  • Railkin AI (2004) Marine biofouling: colonization processes and defenses. CRC, Boca Raton, FL

    Google Scholar 

  • Richelle-Maurer E, Braekman J-C, De Kluijver MJ, Gomez R, Van de Vyver G, Van Soest RWM, Devijver C (2001) Cellular location of (2R, 3R, 7Z)-2-aminotetradec-7-ene-1,3-diol, a potent antimicrobial metabolite produced by the Caribbean sponge Haliclona vansoesti. Cell Tissue Res 306:157–165

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez SR, Ojeda FP, Inestrosa NC (1993) Settlement of benthic marine-invertebrates. Mar Ecol Prog Ser 97:193–207

    Article  Google Scholar 

  • Satou Y, Takatori N, Yamada L, Mochizuki Y, Hamaguchi M, Ishikawa H, Chiba S, Imai K, Kano S, Murakami SD, Nakayama A, Nishino A, Sasakura Y, Satoh G, Shimotori T, Shin-i T, Shoguchi E, Suzuki MM, Takada N, Utsumi N, Yoshida N, Saiga H, Kohara Y, Satoh N (2001) Gene expression profiles in Ciona intestinalis tailbud embryos. Development 128:2893–2904

    PubMed  Google Scholar 

  • Skilleter GA, Russell BD, Degnan BM, Garson MJ (2005) Living in a toxic environment: comparisons of endofauna in two congeneric sponges. Mar Ecol Prog Ser 304:67–75

    Article  Google Scholar 

  • Steinberg PD, De Nys R, Kjelleberg S (2002) Chemical cues for surface colonization. J Chem Ecol 28:1935–1951

    Article  PubMed  CAS  Google Scholar 

  • Wanninger A, Koop D, Degnan BM (2005) Immunocytochemistry of the larval nervous system of Triphyllozoon mucronatum (Ectoprocta: Gymnolaemata: Cheilostomata) and its fate during metamorphosis. Zoomorphology 124:161–170

    Article  Google Scholar 

  • Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52:1189–1208

    Article  PubMed  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Yamada L, Shoguchi E, Wada S, Kobayashi K, Mochizuki Y, Satou Y, Satoh N (2003) Morpholino-based gene knockdown screen of novel genes with developmental function in Ciona intestinalis. Development 130:6485–6495

    Article  PubMed  CAS  Google Scholar 

  • Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

  • Zimmer RK, Butman CA (2000) Chemical signalling processes in the marine environment. Biol Bull 198:168–187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the director and staff at the University of Queensland Heron Island Research Station and the Bribie Aquaculture Centre for use of facilities and research support. We are grateful to Nori Satoh in providing funding and invitation to perform experiments at Kyoto University, Japan, and Sandie Degnan for statistical advice. This work was supported by grants from the Australian Research Council to B.M.D., M.J.G., and G.A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Degnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roper, K.E., Beamish, H., Garson, M.J. et al. Convergent Antifouling Activities of Structurally Distinct Bioactive Compounds Synthesized Within Two Sympatric Haliclona Demosponges. Mar Biotechnol 11, 188–198 (2009). https://doi.org/10.1007/s10126-008-9132-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9132-7

Keywords

Navigation