Skip to main content

Advertisement

Log in

The Encysted Dormant Embryo Proteome of Artemia sinica

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The possibility of the brine shrimp Artemia to produce dormant embryo (cysts) in diapause is a key feature in its life history. In the present study, we obtained a proteomic reference map for the diapause embryo of Artemia sinica using two-dimensional gel electrophoresis with a pH range of 4–7 and a molecular weight range of 10–100 kDa. Approximately 233 proteins were detected, and 60 of them were analyzed by capillary liquid chromatography tandem mass spectrometry (LC–MS/MS). Of these, 39 spots representing 33 unique proteins were identified, which are categorized into functional groups, including cell defense, cell structure, metabolism, protein synthesis, proteolysis, and other processes. This reference map will contribute toward understanding the state of the diapause embryo and lay the basis and serve as a useful tool for further profound studies in the proteomics of Artemia at different developmental stages and physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abatzopoulos TJ (2002) Artemia: basic and applied biology. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Apraiz I, Mi J, Cristobal S (2006) Identification of proteomic signatures of exposure to marine pollutants in mussels (Mytilus edulis). Mol Cell Proteomics 5:1274–1285

    Article  PubMed  CAS  Google Scholar 

  • Bowen ST (1962) The genetics of Artemia salina. I. The reproductive cycle. Biol Bull 122:25–32

    Article  Google Scholar 

  • Boyer PD (1997) The ATP synthase: a splendid molecular machine. Annu Rev Biochem 66:717–749

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Britton C, Murray L (2002) A cathepsin L protease essential for Caenorhabditis elegans embryogenesis is functionally conserved in parasitic nematodes. Mol Biochem Parasit 122:21–33

    Article  CAS  Google Scholar 

  • Browne RA, Trotman CNA, Sorgeloos P (1991) Artemia biology. CRC Press, Boca Raton

    Google Scholar 

  • Carballido-Lopez R, Errington J (2003) A dynamic bacterial cytoskeleton. Trends Cell Biol 13:577–583

    Article  PubMed  CAS  Google Scholar 

  • Clegg JS (1964) The control of emergence and metabolism by external osmotic pressure and the role of free glycerol in developing cysts of Artemia salina. J Exp Biol 41:879–892

    PubMed  CAS  Google Scholar 

  • Clegg JS (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: The case for complete metabolic rate depression. J Exp Biol 200:467–475

    PubMed  Google Scholar 

  • Clegg JS (2005) Desiccation tolerance in encysted embryos of the animal extremophile, Artemia. Integ Comp Biol 45:715–724

    Article  CAS  Google Scholar 

  • Clegg JS, Van Hoa N, Sorgeloos P (2001) Thermal tolerance and heat shock proteins in encysted embryos of Artemia from widely different thermal habitats. Hydrobiologia 466:221–229

    Article  CAS  Google Scholar 

  • Conte FP, Droukas PC, Ewing RD (1977) Development of sodium regulation and De Novo synthesis of NA + K-activated ATPase in larval brine shrimp, Artemia salina. J Exp Zool 202:339–362

    Article  CAS  Google Scholar 

  • Day RM, Gupta JS, MacRae TH (2003) A small heat shock/alpha-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress Chaperon 8:183–193

    Article  CAS  Google Scholar 

  • de Chaffoy de Courcelles D, Kondo M (1980) Lipovitellin from the crustacean, Artemia salina. Biochemical analysis of lipovitellin complex from the yolk granules. J Biol Chem 255:6727–6733

    PubMed  Google Scholar 

  • Drinkwater LE, Crowe JH (1987) Regulation of embryonic diapause in Arternia: environmental and physiological signals. J Exp Zool 241:297–307

    Article  CAS  Google Scholar 

  • Dumas C (1993) Cloning and sequence analysis of the gene for arginine kinase of lobster muscle. J Biol Chem 268:21599–21605

    PubMed  CAS  Google Scholar 

  • Ellington WR (1989) Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J Exp Biol 143:177–194

    PubMed  CAS  Google Scholar 

  • Fagotto F (1990) Yolk degradation in tick eggs: II. Evidence that cathepsin L-like proteinase is stored as a latent, acid-activable proenzyme. Arch Insect Biochem Physiol 14:237–252

    Article  PubMed  CAS  Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  PubMed  CAS  Google Scholar 

  • Guiliano DB, Hong XQ, McKerrow JH, Blaxter ML, Oksov Y, Liu J, Ghedin E, Lustigman S (2004) A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Mol Biochem Parasit 136:227–242

    Article  CAS  Google Scholar 

  • Hecker M, Engelmann S, Cordwell SJ (2003) Proteomics of Staphylococcus aureus—current state and future challenges. J Chromatogr B 787:179–195

    Google Scholar 

  • Herman IM (1993) Actin isoforms. Curr Opin Cell Biol 5:48–55

    Article  PubMed  CAS  Google Scholar 

  • Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422:753–758

    Article  PubMed  CAS  Google Scholar 

  • Hu KJ, Leung PC (2004) Shrimp cathepsin L encoded by an intronless gene has predominant expression in hepatopancreas, and occurs in the nucleus of oocyte. Comp Biochem Phys B-Biochem Mol Biol 138:445

    Article  Google Scholar 

  • Huang C, Liu G, Zeng L, Wu M (2002) Influence of inducing conditions and specific diapause deactivation methods on hatchability of two species. Artemia cysts produced in lab. Fisheries Sci 21:1–4

    Google Scholar 

  • Kotlyar S, Weihrauch D, Paulsen RS, Towle DW (2000) Expression of arginine kinase enzymatic activity and mRNA in gills of the euryhaline crabs Carcinus maenas and Callinectes sapidus. J Exp Biol 203:2395–2404

    PubMed  CAS  Google Scholar 

  • Langdon CM, Rafiee P, Macrae TH (1991) Synthesis of tubulin during early postgastrula development of Artemia - isotubulin generation and translational regulation. Dev Biol 148:138–146

    Article  PubMed  CAS  Google Scholar 

  • Lavens P, Sorgeloos P (1987) The cryptobiotic state of Artemia cysts, its diapause deactivation and hatching: a review. In: Sorgeloos P et al (eds) Artemia research and its applications: 3. Ecology, culturing, use in aquaculture. In the Second International Symposium on the brine shrimp Artemia, pp 27–63

  • Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture, vol 361. FAO Fisheries Technical Paper, Rome

  • Lee J, Valkova N, White MP, Kultz D (2006) Proteomic identification of processes and pathways characteristic of osmoregulatory tissues in spiny dogfish shark (Squalus acanthias). Comp Biochem Phys D-Genom Proteom 1:328–343

    Google Scholar 

  • Liang P, MacRae TH (1999) The synthesis of a small heat shock/[alpha]-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev Biol 207:445–456

    Article  PubMed  CAS  Google Scholar 

  • Liu LQ, Warner AH (2006) Further characterization of the cathepsin L-associated protein and its gene in two species of the brine shrimp, Artemia. Comp Biochem Phys A-Mol Integ Phys 145:458–467

    Google Scholar 

  • MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. Semin Cell Dev Biol 14:251–258

    Article  PubMed  CAS  Google Scholar 

  • MacRae TH, Ludueña RF (1984) Developmental and comparative aspects of brine shrimp tubulin. Biochem J 219:137–148

    PubMed  CAS  Google Scholar 

  • Miyata S, Kubo T (1997) Inhibition of gastrulation in Xenopus embryos by an antibody against a cathepsin L-like protease. Dev Growth Differ 39:111–115

    Article  PubMed  CAS  Google Scholar 

  • O’Connell PA, Pinto DM, Chisholm KA, MacRae TH (2006) Characterization of the microtubule proteome during post-diapause development of Artemia franciscana. Biochim Biophys Acta (BBA) Proteins Proteom 1764:920–928

    Article  CAS  Google Scholar 

  • Olson CS, Clegg JS (1978) Cell division during the development of Artemia salina. Dev Genes Evol 184:1–13

    Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Qiu ZJ, Viner RI, MacRae TH, Willsie JK, Clegg JS (2004) A small heat shock protein from Artemia franciscana is phosphorylated at serine 50. Biochim Biophys Acta-Proteins Proteom 1700:75–83

    Article  CAS  Google Scholar 

  • Shevchenko A, Jensen, ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Biochemistry 93:14440–14445

    CAS  Google Scholar 

  • Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev 79:207–233

    Article  PubMed  Google Scholar 

  • Tyan Y-C, Guo H-R, Liu C-Y, Liao P-C (2006) Proteomic profiling of human urinary proteome using nano-high performance liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Chim Acta 579:158–176

    Article  PubMed  CAS  Google Scholar 

  • Wang H-C, Wang H-C, Leu J-H, Kou G-H, Wang AHJ, Lo C-F (2007) Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol 31:672–686

    Article  PubMed  CAS  Google Scholar 

  • Warner AH, Pert MJ, Osahan JK, Zielinski BS (1995) Potential role in development of the major cysteine protease in larvae of the brine shrimp Artemia franciscana. Cell Tissue Res 282:21–31

    PubMed  CAS  Google Scholar 

  • Warner AH, Pullumbi E, Amons R, Liu LQ (2004) Characterization of a cathepsin L-associated protein in Artemia and its relationship to the FAS-I family of cell adhesion proteins. Eur J Biochem 271:4014–4025

    Article  PubMed  CAS  Google Scholar 

  • Willsie JK, Clegg JS (2001) Nuclear p26, a small heat shock/alpha-crystallin protein, and its relationship to stress resistance in Artemia franciscana embryos. J Exp Biol 204:2339–2350

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the program of National Natural Science Foundation of China (20060109Z4016) and Natural Science Foundation of Shandong Province for the excellent young researcher (2006BSA02004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhai Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Wu, C., Dong, B. et al. The Encysted Dormant Embryo Proteome of Artemia sinica . Mar Biotechnol 10, 438–446 (2008). https://doi.org/10.1007/s10126-007-9079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9079-0

Keywords

Navigation