Skip to main content
Log in

Employing of the Amplified Fragment Length Polymorphism (AFLP) Methodology as an Efficient Population Genetic Tool for Symbiotic Cnidarians

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Although the use of molecular markers in population genetics of marine organisms is increasingly employed, methodologic limitations still hampered the research for some taxa, such as symbiotic cnidarians, including scleractinian corals. The development of molecular tools in scleractinian corals’ studies is faced with a list of obstacles, such as high cost, labor, time consuming, contamination with foreign DNA, and markers with low resolution. The AFLP (amplified fragment length polymorphism) method, overcomes most of the obstacles listed above except of the difficulty of contamination by algal symbiont DNA. We compared the implication of two pre-DNA extraction treatments to obtain coral DNA free of algal contaminations, termed as CPEM, cell population enriched method, and TTEM, total tissue extraction method. The CPEM process result in pure coral DNA for all samples, but is time consuming, whereas in the TTEM process, approximately 25% to 18% of the samples are still contaminated by algal DNA. However, algal DNA contaminations in the PCR at 2.5 × 10−1 ng level (approximately 100 algal cells) and below, did not amplify any new AFLP band or peak for neither radioactive nor florescence analyses. Therefore, even the TTEM process may be used because it is faster, easier to handle, and easily employed on a large amount of samples, with minimal contamination artifacts. When correctly employed, both methods are applicable to wide experimental manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Amar KO, Chadwick-Furman NE, Rinkevich B (2007) Coral planulae as dispersion vehicles: biological properties of larvae released early and late in the season. Marine Ecology Progress Series 350, 71–78

    Google Scholar 

  • Ayre DJ, Dufty S (1994) Evidence for restricted gene flow in the Viviparous coral Seriatopora hystrix on Australia’s Great Barrier Reef. Evolution 48, 1183–1201

    Article  Google Scholar 

  • Bagley MJ, Anderson SL, May B (2001) Choice of methodology for assessing genetic impacts of environmental stressors: polymorphism and reproducibility of RAPD and AFLP fingerprints. Ecotoxicology 10, 239–244

    Article  PubMed  CAS  Google Scholar 

  • Barki Y, Douek J, Grauer G, Gateno D, Rinkevich B (2000) Polymorphism in soft coral larvae revealed by amplified fragment length polymorphism (AFLP) markers. Marine Biol 136, 37–41

    Article  CAS  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14, 1377–1390

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Biol 14, 2899–2914

    CAS  Google Scholar 

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16, 3737–3758

    Article  PubMed  CAS  Google Scholar 

  • Brazeau DA, Sammarco PW, Gleason DF (2005) A multi-locus genetic assignment technique to assess sources of Agaricia agaricites larvae on coral reefs. Marine Biol 147, 1141–1148

    Article  CAS  Google Scholar 

  • Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12, 1979–1991

    Article  PubMed  CAS  Google Scholar 

  • Darling JA, Reitzel AM, Finnerty JR (2004) Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England. Mol Biol 13, 2969–2981

    CAS  Google Scholar 

  • Diekmann Q, Bak R, Stam W, Olsen J (2001) Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Marine Biol 139, 221–233

    Article  CAS  Google Scholar 

  • Douek J, Barki Y, Gateno D, Rinkevich B (2002) Possible cryptic speciation within the sea anemone Actinia equine complex detected by AFLP markers. Zoolog J Linnean Soc 136, 315–320

    Article  Google Scholar 

  • France SC, Rosel PE, Agenbroad JE, Mullineaux LS, Kocher TD (1996) DNA sequence variation of mitochondrial large-subunit rRNA provides support for a two-subclass organization of the Anthozoa (Cnidaria). Mol Marine Biol Biotechnol 5, 15–28

    PubMed  CAS  Google Scholar 

  • Fuchs Y, Douek J, Rinkevich B, Ben-shlomo R (2006) Genediversity and mode of reproduction in the brooded larvae of the coral Heteroxenia. J Hered 97, 493–498

    Article  PubMed  CAS  Google Scholar 

  • Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58, 324–337

    PubMed  CAS  Google Scholar 

  • Goldstein DB, Pollock DD (1997) Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J Hered 88, 335–342

    PubMed  CAS  Google Scholar 

  • Graham DE (1978) The isolation of high molecular weight DNA from whole organisms or large tissue masses. Analytical Biochem 85, 609–613

    Article  CAS  Google Scholar 

  • Hellberg ME, Taylor MS (2002) Genetic analysis of sexual reproduction in the dendrophylliid coral Balanophyllia elegans. Marine Biol 141, 629–637

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933

    Article  PubMed  CAS  Google Scholar 

  • Krauss SL (2000) Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9, 1241–1245

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse TC, Lambert G, Andersen RA, Coffroth MA, Galbraith DW (2005) Symbiodinium (pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J Phycol 41, 880–886

    Article  CAS  Google Scholar 

  • Lopez JV, Kersanach R, Rehner SA, Knowlton N (1999) Molecular determination of species boundaries in corals: genetic analysis of the Montastraea annullaris complex using amplified fragment length polymorphisms and a microsatellite marker. Biol Bull 196, 80–93

    Article  PubMed  CAS  Google Scholar 

  • Magalon H, Samadi S, Richard M, Adjeroud M, Veuille M (2004) Development of coral and zooxanthella-specific microsatellites in three species of Pocillopora (Cnidaria, Scleractinia) from French Polynesia. Mol Ecol Notes 4, 206–208

    Article  CAS  Google Scholar 

  • Maier E, Tollrian R, Nurnberger B (2001) Development of species-specific markers in an organism with endosymbionts: microsatellites in the scleractinian coral Seriatopora hystrix. Mol Ecol Notes 1, 157–159

    Article  CAS  Google Scholar 

  • Marquez LM, MacKenzie JB, Takabayashi M, Smith CR (2003) Difficulties in obtaining microsatellites from acroporid corals. Proceedings of the 9th International Coral Reef Symposium

  • McMillan J, Yellowlees D, Heyward A, Harrison P, Miller DJ (1988) Preparation of high molecular weight DNA from hermatypic corals and its use for DNA hybridization and cloning. Marine Biol 98, 271–276

    Article  CAS  Google Scholar 

  • Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Marine Biotechnol 1, 89–97

    Article  CAS  Google Scholar 

  • Miller KJ, Howard CG (2004) Isolation of microsatellites from two species of scleractinian coral. Mol Ecol Notes 4, 11–13

    Article  CAS  Google Scholar 

  • Odorico DM, Miller DJ (1997) Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): patterns of variation consistent with reticulate evolution. Mol Biol Evol 14, 465–473

    PubMed  CAS  Google Scholar 

  • Reichman JR, Wilcox TP, Vize PD (2003) PCP gene family in symbiodinium from Hippopus hippopus: low levels of concerted evolution, isoform diversity, and spectral tuning of chromophores. Mol Biol Evol 20, 2143–2154

    Article  PubMed  CAS  Google Scholar 

  • Ridgway T (2005) Allozyme electrophoresis still represents a powerful technique in the management of coral reefs. Biodivers Conserv 14, 135–149

    Article  Google Scholar 

  • Ridgway T, Gates R (2006) Why are there so few genetic markers available for coral population analyses? Symbiosis 41, 1–7

    Article  CAS  Google Scholar 

  • Rinkevich B, Yankelevich I (2004) Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. J Exp Biol 207, 3531–3536

    Article  PubMed  Google Scholar 

  • Rinkevich B, Weissman IL, De Tomaso AW (1998) Transplantation of Fu/HC-incompatible zooids in Botryllus schlosseri results in chimerism. Biol Bull 195, 98–106

    Article  PubMed  CAS  Google Scholar 

  • Rinkevich B, Avishai N, Rabinowitz C (2005) UV incites diverse levels of DNA breaks in different cellular compartments of a branching coral species. J Exp Biol 208, 843–848

    Article  Google Scholar 

  • Romano SL, Palumbi SR (1997) Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. J Mol Evol 45, 397–411

    Article  PubMed  CAS  Google Scholar 

  • Schondelmaier J, Steinrücken G, Jung C (1996) Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L.). Plant Breeding 115, 231–237

    Article  CAS  Google Scholar 

  • Shafir S, Van Rijn J, Rinkevich B (2001) Nubbing of coral colonies: A novel approach for the development of inland broodstocks. Aquarium Sci Conserv 3, 183–190

    Article  Google Scholar 

  • Shearer TL, Coffroth MA (2004) Isolation of microsatellite loci from the scleractinian corals, Montastraea cavernosa and Porites astreoides. Mol Ecol Notes 4, 435–437

    Article  CAS  Google Scholar 

  • Shearer TL, van Oppen MJH, Romano L, Rheide GE (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11, 2475–2487

    Article  PubMed  CAS  Google Scholar 

  • Stoddart JA (1984) Genetic differentiation amongst populations of the coral Pocillopora damicornis off southwestern Australia. Coral Reefs 3, 149–156

    Article  Google Scholar 

  • Tom M, Douek J, Yankelevich I, Bosch TCG, Rinkevich B (1999) Molecular characterization of the first heat shock protein 70 from a reef coral. Biochem Biophys Res Commun 262, 103–108

    Article  PubMed  CAS  Google Scholar 

  • van Oppen MJH, Willis BL, Van Vugt HWJA, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9, 1363–1373

    Article  PubMed  CAS  Google Scholar 

  • van Oppen MJH, McDonald BJ, Willis B, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18, 1315–1329

    PubMed  Google Scholar 

  • van Oppen MJH, Underwood JN, Muirhead AN, Peplow L (2007) Ten microsatellite loci for the reef-building coral Acropora millepora (Cnidaria, Scleractinia) from the Great Barrier Reef, Australia. Mol Ecol Notes 7, 436–438

    Article  Google Scholar 

  • Vollmer SV, Palumbi SR (2004) Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Mol Ecol 13, 2763–2772

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: new technique for DNA fingerprinting. Nucleic Acids Res 23, 4407–4414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was partly supported by the World Bank/GEF project, by INCO-DEV project (REEFRES-510657), and by the AID-CDR program (no. C23-004). This research fulfills part of the requirements for the doctoral degree by K. O. Amar, Bar Ilan University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch Rinkevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amar, KO., Douek, J., Rabinowitz, C. et al. Employing of the Amplified Fragment Length Polymorphism (AFLP) Methodology as an Efficient Population Genetic Tool for Symbiotic Cnidarians. Mar Biotechnol 10, 350–357 (2008). https://doi.org/10.1007/s10126-007-9069-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9069-2

Keywords

Navigation