Skip to main content

Advertisement

Log in

A Novel Approach for Bioremediation of a Coastal Marine Wastewater Effluent Based on Artificial Microbial Mats

  • Original Paper
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A novel alternative for wastewater effluent bioremediation was developed using constructed microbial mats on low-density polyester. This biotechnology showed high removal efficiencies for nitrogen and phosphorous in a short retention time (48 h): 94% for orthophosphate (7.78 g \( PO_{4} ^{{3 - }} - P \) m3 d−1), 79% for ammonium (11.30 g \( NH_{4} ^{ + } - N \) m−3 d−1), 78% for nitrite (7.46 g \( NO_{2} ^{ - } - N \) m−3 d−1), and 83% for nitrate (8.55 g \( NO_{3} ^{ - } - N \) m−3 d−1). The microbial mats were dominated by Cyanobacteria genera such as Chroococcus sp., Lyngbya sp., and bacteria of the subclass Proteobacteria representative of the Eubacteria Domain. Nitzschia sp. was the dominant Eukaryote Domain. Various N and P substrates in the wastewater permit the growth of self-forming and self-sustaining bacterial, microalgal, and cyanobacterial communities on a polyester support. The result is the continuous, self-sufficient growth of microbial mats. This is an innovative, economical, and environmentally safe alternative for the treatment of wastewater effluents in coastal marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • APHA (American Public Health Association, American Water Works Association, Water Pollutions Control Federations) (1995) Standard Methods for the Examination of Water and Wastewater, 19 th ed (Washington, DC: APHA)

  • Ausubel, FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1992) Short Protocols in Molecular Biology (New York: Greene Publishing Associates and John Wiley & Sons)

  • Bender J, Phillips P (1995) Biological remediation of mixed wastes by microbial mats. Fed. Facilities 217/Environ J Autumn, 77–85

  • Bender J, Phillips P (2004) Microbial mats for multiple applications in aquaculture and bioremediation. Bioresource Technol 94, 229–238

    Article  CAS  Google Scholar 

  • Bender J, Vatcharapijarn Y, Russell A (1989a) Fish feeds from grass clippings. Aquacult Eng 8, 407–419

    Article  Google Scholar 

  • Craggs RJ, McAuley PJ, Smith VJ (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31, 1701–1707

    Article  CAS  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67, 5273–5284

    Article  PubMed  CAS  Google Scholar 

  • Ebeling JM, Rishel KL, Sibrell PL (2005) Screening and evaluation of polymers as flocculation aids. Aquacult Eng 33, 235–249

    Article  Google Scholar 

  • Franco-Rivera A, Paniagua-Michel J, Zamora-Castro J (2007) Characterization and performance of constructed nitrifying biofilms during nitrogen bioremediation of a wastewater effluent. J Ind Microbiol Biotechnol 34, 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Cerezo R, Suárez ML, Vidal-Abarca MR (2001) The performance of a multistage system of constructed wetlands for urban wastewater treatment in semiarid region of SE Spain. Ecol Eng 16, 501–517

    Article  Google Scholar 

  • Guillard R, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotellanana (Husted) and Detonula confervacea (Cleve). Can J Microbiol 8, 229–239

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Zárate G, Olmos-Soto J (2006) Identification of bacterial diversity in the oyster Crassostrea gigas by fluorescent in situ hybridization and polymerase chain reaction. J Appl Microbiol 4, 664–672

    Article  Google Scholar 

  • Horrigan SG, Hagström Å, Koike K, Azam F (1988) Inorganic nitrogen utilization by assemblages of marine bacteria in seawater culture. Mar Ecol Prog Ser 50, 147–150

    Article  CAS  Google Scholar 

  • Kloep F, Roske I, Neu T (2000) Performance and microbial structure of a nitrifying fluidized-bed reactor. Water Res 34, 311–319

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1998) Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresour Technol 63, 115–121

    Article  CAS  Google Scholar 

  • Liu W-T, Nielsen AT, Wu J-H, Tsai C-S, Matsuo Y, Molin S (2001) In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 3, 110–122

    Article  PubMed  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15, 377–390

    Article  PubMed  CAS  Google Scholar 

  • Oswald WJ (1988) Micro-algae and wastewater treatment. In: Micro-algal Biotechnology. Borowitzka MA, Borowitzka LJ eds. (Cambridge, UK: Cambridge University Press) pp 305–326

    Google Scholar 

  • Paerl HW, Pinckney JL (1996) Microbial consortia; their roles in aquatic production and biogeochemical cycling. Microb Ecol 31, 225–247

    Article  PubMed  Google Scholar 

  • Paniagua-Michel J, García O (2003) Ex-situ bioremediation of shrimp culture effluent using constructed microbial mats. Aquacult Eng 28, 131–139

    Article  Google Scholar 

  • Prescott GW (1954) How to Know the Freshwater Algae (Dubuque, IA: Wm C, Brown)

    Google Scholar 

  • Qureshi F, Badar U, Ahmed N (2001) Biosorption of copper by bacterial biofilm on a flexible polyvinil chloride conduit. Appl Environ Microbiol 9, 4349–4352

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61

    Google Scholar 

  • Rostron WM, Stuckey DC, Young AA (2001) Nitrification of high strength ammonia wastewater: comparative study of immobilisation media. Water Res 35, 1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The Diatoms. Biology and Morphology of the Genera (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  • Soeder CJ, Hegewald E (1988) Scenedesmus. In: Micro-algal Biotechnology. Borowitzka MA, Borowitzka LJ eds. (Cambridge, UK: Cambridge University Press) pp 59–84

    Google Scholar 

  • Stolz JF (2000) Structure of microbial mats and biofilms. In: Microbial Sediments. Riding RE, Awramik SM eds. (Heidelberg: Springer) pp 1–8

    Google Scholar 

  • Syrett PJ (1981) Nitrogen metabolism of microalgae. In: Physiological Basis of Phytoplankton Ecology: Can Bull Fish Aquat Sci. Platt T ed. 210, pp 182–210

  • Tam NF, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107, 145–151

    Article  PubMed  CAS  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater Engineering: Treatment and Reuse (New York: McGraw-Hill)

    Google Scholar 

  • Urano N, Sasaki E, Ueno R, Namba H, Shida Y (2002) Bioremediation of fish cannery wastewater with yeast isolated from drainage canal. Mar Biotech 4, 559–564

    Article  CAS  Google Scholar 

  • Urrutia I, Serra JL, Llama MJ (1995) Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzyme Microb Tech 17, 200–205

    Article  CAS  Google Scholar 

  • Vasconcelos VM, Pereira E (2001) Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Res 35, 1354–1357

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotech 13, 218–227

    Article  PubMed  CAS  Google Scholar 

  • Winter JG, Duthie HC (2000) Epilithic diatoms as indicators of stream total N and P concentration. J North Am Benthol Soc 19, 32–49

    Article  Google Scholar 

  • Yang P, Wah-Koon T, Yen-Peng T (2006) Design and performance study of a novel immobilized hollow fiber membrane bioreactor. Bioresource Technol 97, 39–46

    Article  CAS  Google Scholar 

  • Zamora-Castro JE (2004) Bioremediation System of a Coastal-Marine Wastewater Effluent by Constructed Microbial Mats (in Spanish). M. S. Thesis, Centro de Investigación Científica y de Educación Superior de Ensenada. Ensenada, B. C. México.

Download references

Acknowledgments

The authors thank the Fondo Sectorial Secretaria Medio Ambiente y Recursos Naturales (SEMARNAT) and the National Council for Science and Technology of Mexico (CONACYT), project 0683, for financial support. We also thank Drs. Jorge Olmos and Galdy Hernandez for their kind help in the molecular characterization of bacteria, Israel Gradilla for his help in electron micrograph analysis, and Francisco Valenzuela for drawing figures. The authors also thank anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paniagua-Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamora-Castro, J., Paniagua-Michel, J. & Lezama-Cervantes, C. A Novel Approach for Bioremediation of a Coastal Marine Wastewater Effluent Based on Artificial Microbial Mats. Mar Biotechnol 10, 181–189 (2008). https://doi.org/10.1007/s10126-007-9050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9050-0

Keywords

Navigation