Skip to main content
Log in

PCR Amplification of Microsatellites from Single Cells of Karenia brevis Preserved in Lugol’s Iodine Solution

  • Brief Communication
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A simple and effective protocol is described for multiplex polymerase chain reaction (PCR) amplification of single cells of Karenia brevis. The protocol requires minimum processing, avoids additions that might dilute target DNA template, and can be used on cells preserved in Lugol’s iodine preservative. Destaining of Lugol’s-preserved cells with sodium thiosulfate allowed successful amplification of single-copy, nuclear-encoded microsatellites in single cells of K. brevis that have been preserved for up to 6 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Doyle JJ, Doyle JL (1990) A rapid total DNA isolation procedure for fresh plant tissue. Focus 12, 13–15

    Google Scholar 

  • Hutchison CA, Hamilton OS, Pfannkoch C, Venter JC (2005) Cell-free cloning using φ29 DNA polymerase. Proc Natl Acad Sci USA 102, 17332–17336

    Article  PubMed  CAS  Google Scholar 

  • Iglesias-Rodriguez MD, Schofield OM, Batley J, Medlin LK, Hayes PK (2006) Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. J Phycol 42, 526–536

    Article  CAS  Google Scholar 

  • Kai AKL, Cheung YK, Yeung PKK, Wong JTY (2006) Development of single-cell PCR methods for the Raphidophyceae. Harmful Algae 5, 649–657

    Article  CAS  Google Scholar 

  • Ki J-S, Jang GY, Han M (2005) Integrated method for single-cell DNA extraction, PCR amplification, and sequencing of ribosomal DNA from harmful dinoflagellates Cochlodinium polykrikoides and Alexandrium catenella. Mar Biotechnol 6, 587–593

    Article  CAS  Google Scholar 

  • Loret P, Tengs T, Villareal TA, Singler H, Richardson B, McGuire P, Morton S, Busman M, Campbell L (2002) No difference found in ribosomal DNA sequences from physiologically diverse clones of Karenia brevis (Dinophyceae) from the Gulf of Mexico. J Plankton Res 24, 735–739

    Article  CAS  Google Scholar 

  • Nagai S, Sekino M, Matsuyama Y, Itakura S (2006) Development of microsatellite markers in the toxic dinoflagellate Alexandrium catenella (Dinophyceae). Mol Ecol Notes 6, 120–122

    Article  CAS  Google Scholar 

  • Nagai S, Lian C, Yamaguchi S, Hamaguchi M, Matsuyama Y, Itakura S, Shimada H, Kaga S, Yamauchi H, Sonda Y, Nishikawa T, Kim CH, Hogetsu T (2007) Microsatellite markers reveal population genetic structure of the toxic dinoflagellate Alexandrium tamarense (Dinophyceae) in Japanese coastal waters. J Phycol 43, 43–54

    Article  CAS  Google Scholar 

  • Raghunathan A, Ferguson, Jr. HR, Bornarth CJ, Song W, Driscoll M, Lasken RS (2005) Genomic DNA Amplification from a Single Bacterium. Environ Microbiol 71, 3342–3347

    Article  CAS  Google Scholar 

  • Renshaw M, Soltysiak K, Arreola D, Loret P, Patton JC, Gold JR, Campbell L (2006) Microsatellite DNA markers for population genetic studies in the dinoflagellate Karenia brevis. Mol Ecol Notes 6, 1157–1159

    Article  CAS  Google Scholar 

  • Richlen ML, Barber PH (2005) A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Mol Ecol Notes 5, 688–691

    Article  CAS  Google Scholar 

  • Rynearson TA, Armbrust EV (2004) Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). J Phycol 40, 34–43

    Article  Google Scholar 

  • Sebastián CR, O’Ryan C (2001) Single-cell sequencing of dinoflagellate (Dinophyceae) nuclear ribosomal genes. Mol Ecol Notes 1, 329–331

    Article  Google Scholar 

  • Steidinger KA, Vargo GA, Tester PA, Tomas CR (1998) “Bloom dynamics and physiology of Gymnodinium breve with emphasis on the Gulf of Mexico”. In: NATO ASI Series: Physiological Ecology of Harmful Algal Blooms, Vol. G 41. Anderson DM, Cembella AD, Hallegraeff GM, eds. (Berlin: Springer-Verlag), pp 133–153

    Google Scholar 

  • Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A (2003) Mixotrophs combine resource use to outcompete specialists: implications for aquatic food webs. Proc Natl Acad Sci USA 100, 12776–2781

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to L.C. and J.R.G. from the EPA’s Science to Achieve Results (STAR) Program (Award R-83041301-0) and from the National Oceanic and Atmospheric Administration Coastal Ocean Program (Award NA06NOS4780244) and by the Texas Agricultural Experiment Station (Project H-6703). We thank T.J. Frommlet for technical advice. This article is Contribution Number 154 of the Center for Biosystematics and Biodiversity at Texas A&M University and ECOHAB Contribution Number 240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Henrichs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrichs, D.W., Renshaw, M.A., Santamaria, C.A. et al. PCR Amplification of Microsatellites from Single Cells of Karenia brevis Preserved in Lugol’s Iodine Solution. Mar Biotechnol 10, 122–127 (2008). https://doi.org/10.1007/s10126-007-9044-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9044-y

Keywords

Navigation