Skip to main content
Log in

Antifouling Activity of Bromotyrosine-Derived Sponge Metabolites and Synthetic Analogues

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Eighteen brominated sponge-derived metabolites and synthetic analogues were analyzed for antilarval settlement of Balanus improvisus. Only compounds exhibiting oxime substituents including bastadin-3 (4), −4 (1), −9 (2), and −16 (3), hemibastadin-1 (6), aplysamine-2 (5), and psammaplin A (10) turned out to inhibit larval settling at 1 to 10 μM. Analogues of hemibastadin-1 (6) were synthesized and tested for structure activity studies. Debromohemibastadin-1 (8) inhibited settling of B. improvisus, albeit at lower concentrations than hemibastadin-1 (6). Both 6 and 8 also induced cyprid mortality. 5,5′-dibromohemibastadin-1 (7) proved to be nontoxic, but settlement inhibition was observed at 10 μM. Tyrosinyltyramine (9), lacking the oxime function, was not antifouling active and was non-toxic at 100 μM. Hemibastadin-1 (6) and the synthetic products showed no general toxicity when tested against brine shrimp larvae. In contrast to the lipophilic psammaplin A (10), the hydrophilic sulfated psammaplin A derivative (11) showed no antifouling activity even though it contains an oxime group. We therefore hypothesize that the compound needs to cross membranes (probably by diffusion) and that the target for psammaplin A lies intracellularly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alzieu C, Sanjuan J, Deltreil JP, Borel, M (1986) Tin contamination in Arcachon bay—effects on oyster shell anomalies. Mar Pollut Bull 17, 494–498

    Article  CAS  Google Scholar 

  • Alzieu C, Sanjuan J, Michel P, Borel M, Dreno JP (1989) Monitoring and assessment of butyltins in atlantic coastal waters. Mar Pollut Bull 20, 22–26

    Article  CAS  Google Scholar 

  • Arabshahi L, Schmitz FJ (1987) Brominated tyrosine metabolites from an unidentified sponge. J Org Chem 52, 3584–3586

    Article  CAS  Google Scholar 

  • Armstrong PB, Quigley JP (1999) Alpha(2)-macroglobulin: an evolutionarily conserved arm of the innate immune system. Dev Comp Immunol 23, 375–390

    Article  PubMed  CAS  Google Scholar 

  • Assmann M, Lichte E, Pawlik JR, Kock M (2000) Chemical defenses of the Caribbean sponges Agelas wiedenmayeri and Agelas conifera. Mar Ecol Prog Ser 207, 255–262

    Article  CAS  Google Scholar 

  • Berntsson KM, Jonsson PR, Lejhall M, Gatenholm P (2000) Analysis of behavioural rejection of micro-textured surfaces and implications for recruitment by the barnacle Balanus improvisus. J Exp Mar Biol Ecol 251, 59–83

    Article  PubMed  Google Scholar 

  • Bers AV, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20, 43–51

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23, 26–78

    Article  PubMed  CAS  Google Scholar 

  • Borders DB, Morton GO, Wetzel ER (1974) Structure of a novel bromine compound isolated from a sponge. Tetrahedron Lett 31, 2709–2712

    Article  Google Scholar 

  • Butler MS, Lim TK, Capon RJ, Hammond LS (1991) The bastadins revisited—new chemistry from the Australian marine sponge Ianthella basta. Austral J Chem 44, 287–296

    Article  CAS  Google Scholar 

  • Carballo J, Hernandez-Inda Z, Perez P, Garcia-Gravalos M (2002) A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotech 2, 17–21

    Article  Google Scholar 

  • Carney JR, Scheuer PJ, Kellyborges M (1993) A new bastadin from the sponge Psammaplysilla purpurea. J Nat Prod 56, 153–157

    Article  PubMed  CAS  Google Scholar 

  • Cimino G, Derosa S, Destefano S, Self R, Sodano G (1983) The bromo-compounds of the true sponge Verongia aerophoba. Tetrahedron Lett 24, 3029–3032

    Article  CAS  Google Scholar 

  • Clare AS (1996a) Natural product antifoulants: status and potential. Biofouling 9, 211–229

    CAS  Google Scholar 

  • Clare AS (1996b) Signal transduction in barnacle settlement: calcium re-visited. Biofouling 10, 141–159

    CAS  Google Scholar 

  • Dahlström M, Lindgren F, Berntsson K, Sjögren M, Martensson LGE, Jonsson PR, Elwing H (2005) Evidence for different pharmacological targets for imidazoline compounds inhibiting settlement of the barnacle Balanus improvisus. J Exp Zool A 303A, 551–562

    Article  CAS  Google Scholar 

  • Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22, 43–54

    Article  PubMed  CAS  Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21, 94–104

    Article  PubMed  CAS  Google Scholar 

  • IMO (2001) Resolution on early and effective application of the international convention on the control of harmful antifouling systems on ships. Resolution A928(22) IMO

  • Jaspars M, Rali T, Laney M, Schatzman RC, Diaz MC, Schmitz FJ, Pordesimo EO, Crews P (1994) The search for inosine 5′-phosphate dehydrogenase (IMPDH) inhibitors from marine sponges—evaluation of the bastadin alkaloids. Tetrahedron 50, 7367–7374

    Article  CAS  Google Scholar 

  • Kazlauskas R, Lidgard RO, Murphy PT, Wells RJ (1980) Brominated tyrosine-derived metabolites from the sponge Ianthella basta. Tetrahedron Lett 21, 2277–2280

    Article  CAS  Google Scholar 

  • Kelly SR, Garo E, Jensen PR, Fenical W, Pawlik JR (2005) Effects of Caribbean sponge secondary metabolites on bacterial surface colonization. Aquat Microb Ecol 40, 191–203

    Article  Google Scholar 

  • Kobayashi J, Tsuda M, Murayama T, Nakamura H, Ohizumi Y, Ishibashi M, Iwamura M, Ohta T, Nozoe S (1990) Ageliferins, potent actomyosin atpase activators from the Okinawan marine sponge Agelas sp. Tetrahedron 46, 5579–5586

    Article  CAS  Google Scholar 

  • Kotoku N, Tsujita H, Hiramatsu A, Mori C, Koizumi N, Kobayashi M (2005) Efficient total synthesis of bastadin 6, an anti-angiogenic brominated tyrosine-derived metabolite from marine sponge. Tetrahedron 61, 7211–7218

    Article  CAS  Google Scholar 

  • Mack MM, Molinski TF, Buck ED, Pessah IN (1994) Novel modulators of skeletal-muscle Fkbp12 calcium-channel complex from Ianthella basta—role of Fkbp12 in channel gating. J Biol Chem 269, 23236–23249

    PubMed  CAS  Google Scholar 

  • Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (1982) Brine shrimp—a convenient general bioassay for active-plant constituents. Planta Med 45, 31–34

    Article  CAS  Google Scholar 

  • Miao S, Andersen RJ, Allen TM (1990) Cytotoxic metabolites from the sponge Ianthella basta collected in Papua-New-Guinea. J Nat Prod 53, 1441–1446

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Jurek J, Carney JR, Scheuer PJ (1994) 2 more bastadins, 16 and 17, from an Indonesian sponge Ianthella basta. J Nat Prod 57, 407–410

    Article  CAS  Google Scholar 

  • Pettit GR, Butler MS, Williams MD, Filiatrault MJ, Pettit RK (1996) Isolation and structure of hemibastadinols 1–3 from the Papua New Guinea marine sponge Ianthella basta. J Nat Prod 59, 927–934

    Article  PubMed  CAS  Google Scholar 

  • Pham NB, Butler MS, Quinn RJ (2000) Isolation of psammaplin A 11′-sulfate and bisaprasin 11 ′-sulfate from the marine sponge Aplysinella rhax. J Nat Prod 63, 393–395

    Article  PubMed  CAS  Google Scholar 

  • Pordesimo EO, Schmitz FJ (1990) New bastadins from the sponge Ianthella basta. J Org Chem 55, 4704–4709

    Article  CAS  Google Scholar 

  • Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas—current status and microbiological implications. Appl Microbiol Biot 59, 125–134

    Article  CAS  Google Scholar 

  • Renslo AR, Luehr GW, Gordeev MF (2006) Recent developments in the identification of novel oxazolidinone antibacterial agents. Bioorg Med Chem 14, 4227–4240

    Article  PubMed  CAS  Google Scholar 

  • Rittschof D, Maki J, Mitchell R, Costlow JD (1986) Ion and neuropharmacological studies of barnacle settlement. Neth J Sea Res 20, 269–275

    Article  CAS  Google Scholar 

  • Shen XY, Perry TL, Dunbar CD, Kelly-Borges M, Hamann MT (1998) Debromosceptrin, an alkaloid from the Caribbean sponge Agelas conifera. J Nat Prod 61, 1302–1303

    Article  PubMed  CAS  Google Scholar 

  • Sjögren M, Dahlström M, Göransson U, Jonsson PR, Bohlin L (2004a) Recruitment in the field of Balanus improvisus and Mytilus edulis in response to the antifouling cyclopeptides barettin and 8,9-dihydrobarettin from the marine sponge Geodia barretti. Biofouling 20, 291–297

    Article  PubMed  CAS  Google Scholar 

  • Sjögren M, Göransson U, Johnson AL, Dahlström M, Andersson R, Bergman J, Jonsson PR, Bohlin L (2004b) Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. J Nat Prod 67, 368–372

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE (1985) Exudation of biologically-active metabolites in the sponge Aplysina fistularis. I Biological evidence. Mar Biol 88, 23–26

    Article  CAS  Google Scholar 

  • Thompson JE, Walker RP, Faulkner DJ (1985) Screening and bioassays for biologically active substances from 40 marine sponge species from San Diego, California, USA. Mar Biol 88, 11–21

    Article  CAS  Google Scholar 

  • Thoms C, Wolff M, Padmakumar K, Ebel R, Proksch P (2004) Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z Naturforsch (C) 59, 113–122

    CAS  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1996a) Ceratinamides A and B: new antifouling dibromotyrosine derivatives from the marine sponge Pseudoceratina purpurea. Tetrahedron 52, 8181–8186

    Article  CAS  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1996b) Ceratinamine: an unprecedented antifouling cyanoformamide from the marine sponge Pseudoceratina purpurea. J Ogr Chem 61, 2936–2937

    Article  CAS  Google Scholar 

  • Tsukamoto S, Kato H, Hirota H, Fusetani N (1996c) Pseudoceratidine: a new antifouling spermidine derivative from the marine sponge Pseudoceratina purpurea. Tetrahedron Lett 37, 1439–1440

    Article  CAS  Google Scholar 

  • Wahl M (1989) Marine epibiosis. 1 Fouling and antifouling—some basic aspects. Mar Ecol Prog Ser 58, 175–189

    Article  Google Scholar 

  • Walker RP, Faulkner DJ, Vanengen D, Clardy J (1981) Sceptrin, an antimicrobial agent from the sponge Agelas-Sceptrum. J Am Chem Soc 103, 6772–6773

    Article  CAS  Google Scholar 

  • Xu HH, Chen X, Liao RA, Xie QL (2001) Isolation and crystal structure of 2-bromoaldisin. Chin J Struc Chem 20, 173–175

    CAS  Google Scholar 

  • Xynas R, Capon RJ (1989) 2 New bromotyrosine-derived metabolites from an Australian marine sponge, Aplysina sp. Austral J Chem 42, 1427–1433

    Article  CAS  Google Scholar 

  • Yamamoto H, Satuito CG, Yamazaki M, Natoyama K, Tachibana A, Fusetani N (1998) Neurotransmitter blockers as antifoulants against planktonic larvae of the barnacle Balanus amphitrite and the mussel Mytilus galloprovincialis. Biofouling 13, 69–82

    Article  CAS  Google Scholar 

  • Yamamoto H, Shimizu K, Tachibana A, Fusetani N (1999) Roles of dopamine and serotonin in larval attachment of the barnacle, Balanus amphitrite. J Exp Zool 284, 746–758

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank BMBF (BiotechMarin) for financial support. C. Thoms acknowledges a Feodor Lynen Fellowship by the Alexander von Humboldt-Foundation, Bonn, Germany and P. Schupp acknowledges support by the National Institutes of Health MBRS SCORE grant S06-GM44796.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Proksch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortlepp, S., Sjögren, M., Dahlström, M. et al. Antifouling Activity of Bromotyrosine-Derived Sponge Metabolites and Synthetic Analogues. Mar Biotechnol 9, 776–785 (2007). https://doi.org/10.1007/s10126-007-9029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9029-x

Keywords

Navigation