Skip to main content

Advertisement

Log in

Cultivation of Sponge Larvae: Settlement, Survival, and Growth of Juveniles

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to culture sponge juveniles from larvae. Starting from larvae we expected to enhance the survival and growth, and to decrease the variation in these parameters during the sponge cultures. First, settlement success, morphological changes during metamorphosis, and survival of Dysidea avara, Ircinia oros, Hippospongia communis, under the same culture conditions, were compared. In a second step, we tested the effects of flow and food on survival and growth of juveniles from Dysidea avara and Crambe crambe. Finally, in a third experiment, we monitored survival and growth of juveniles of D. avara and C. crambe transplanted to the sea to compare laboratory and field results. The results altogether indicated that sponge culture from larvae is a promising method for sponge supply and that laboratory culture under controlled conditions is preferred over sea cultures in order to prevent biomass losses during these early life stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Amano S, Hori I (1996) Transdifferentiation of larval flagellated cells to choanocytes in the metamorphosis of the demosponge Haliclona permollis. Biol Bull 190, 161–172

    Article  Google Scholar 

  • Amano S, Hori I (2001) Metamorphosis of coeloblastula performed by multipotential larval flagellated cells in the calcareous sponge Leucoselenia laxa. Biol Bull 200, 20–32

    Article  PubMed  CAS  Google Scholar 

  • Balconi G, Erba E, Bonfontani M, Filipperschi S, Garcia de Quesada T, Jimeno JM, D’Incalci M (1995) Antiproliferative activity and mode of action of novel compounds of marine origin. Eur J Cancer 31 (Suppl 6), S26

    Article  Google Scholar 

  • Blunt JW, Coop BR, Munro MH, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22, 15–61

    Article  PubMed  CAS  Google Scholar 

  • Boury-Esnault N, Rützler K (1997) Thesaurus of Sponge Morphology (Washington, DC: Smithsonian Contributions to Zoology), p 596

    Google Scholar 

  • Cimino G, De Stefano S, Minale L, Fattorusso E (1972) Ircinin-1 and -2, linear sesterpenes from the marine sponge Ircinia oros. Tetrahedron 28, 333–341

    Article  CAS  Google Scholar 

  • De Caralt S, Agell G, Uriz MJ (2003) Long-term culture of sponges explants: conditions enhancing survival and growth, and assessment of bioactivity. Biomol Eng 20, 339–347

    Article  PubMed  CAS  Google Scholar 

  • De Rosa S, De Caro S, Iodice C, Tommonaro G, Stefanov K, Popov S (2003) Development in primary cell cultura of demosponges. J Biotechnol 100, 119–125

    Article  PubMed  Google Scholar 

  • De Vos L, Rützler K, Boury-Esnault N, Donadey C, Vacelet J (1991) Atlas of Sponge Morphology (Washington and London: Smithsonian Institution Press)

    Google Scholar 

  • Duckworth A, Battershill CN (2003) Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221, 311–329

    Article  Google Scholar 

  • Fusetani N (2000) Introduction In: Drugs from the Sea, Fusetani N, ed. (Basel: Karger) pp 1–5

    Chapter  Google Scholar 

  • Galera J, Turon X, Uriz MJ, Becerro M (2000) Microstructure variation in sponges sharing growth form: the encrusting demosponges Dysidea avara and Crambe crambe. Acta Zool 81, 93–107

    Article  Google Scholar 

  • Garrabou J, Zabala M (2001) Growth dynamics in four Mediterranean demosponges. Estuar Coast Shelf S 52, 293–303

    Article  Google Scholar 

  • Hoffmann F, Rapp HT, Zöller T, Reitner J (2003) Growth and regeneration in cultivated fragments of the boreal deep water sponge Geodia berretti Bowebank, 1858 (Geodiidae, Tetractinellida, Demospongiae). J Biotechnol 100, 109–118

    Article  PubMed  CAS  Google Scholar 

  • Jares-Erijman EA, Sakai R, Rinehart KL (1991) Crambiscidins: new antiviral and cytotoxic compounds from the sponge Crambe crambe. J Org Chem 56, 5712–5715

    Article  CAS  Google Scholar 

  • Kaye HR, Reiswig HM (1991) Sexual reproduction in four Caribbean commercial sponges III Larval behaviour, settlement and metamorphosis. Invertebr Reprod Dev 19, 25–35

    Google Scholar 

  • Loya S, Hizi A (1990) The inhibition of human immunodeficiency virus type 1 reverse transcriptase by avarol and avarone derivatives. FEBS Lett 269, 131–134

    Article  PubMed  CAS  Google Scholar 

  • Maldonado M, Young CM (1999) Effects of the duration of larval life on postlarval stages of the demosponge Sigmadocia caerulea. J Exp Mar Biol Ecol 232, 9–21

    Article  Google Scholar 

  • Manly FJ (1991) Randomization and Montecarlo Methods in Biology (London: Chapman and Hall)

    Google Scholar 

  • Mariani S, Uriz MJ, Turon X (2000) Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution. Mar Biol 137, 783–790

    Article  Google Scholar 

  • Mariani S, Uriz MJ, Turon X (2005) The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. J Plankton Res 3, 249–262

    Article  Google Scholar 

  • Marshall DJ, Keough MJ (2003) Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. Mar Ecol Prog Ser 255, 145–153

    Article  Google Scholar 

  • Mendola D (2003) Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol Eng 20, 37–82

    Article  Google Scholar 

  • Moore HF (1910) A practical method of sponge culture. Bull US Bur Fish 28, 545–585

    Google Scholar 

  • Müller WEG, Maidhof A, Zahn RK, Schröder HC, Gasic MJ, Heidemann D, Bernd A, Kurelec B, Eich E, Sibert G (1985) Potent antileukemic activity of the novel cytostatic agent avarone and its analogues in vitro and in vivo. Cancer Res 45, 4822–4827

    PubMed  Google Scholar 

  • Müller WEG, Wiens M, Batel R, Steffen R, Schröder HC, Borejevic R, Custodio MR (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Prog Ser 178, 205–219

    Article  Google Scholar 

  • Nickel M, Brümmer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J Biotechnol 100, 147–159

    Article  PubMed  CAS  Google Scholar 

  • Osinga R, de Beukelaer PB, Meijer EM, Tramper J, Wijffels RH (1999) Growth of the sponge Pseudosuberites (aff) andrewsi in a closed system. J Biotechnol 70, 155–161

    Article  CAS  Google Scholar 

  • Osinga R, Kleijn R, Groenendijk E, Niesink P, Tramper J, Wijffels R (2001) Development of in vivo sponges cultures: particle feeding by the tropical sponge Pseudosuberites aff andrewsi. Mar Biotechnol 6, 544–554

    Article  CAS  Google Scholar 

  • Osinga R, Belarbi EH, Molina Grima E, Tramper J, Wijffels RH (2003) Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor. J Biotechnol 100, 141–146

    Article  PubMed  CAS  Google Scholar 

  • Pomponi SA, Willoughby R (1994) “Sponge cell culture for the production of bioactive metabolites”. In: Sponges in Time and Space, van Soest R, van Kempen TMG, Braekman JC, eds. (Rotterdam: A Balkema) pp 395–400

    Google Scholar 

  • Potvin C, Lechowicz MJ, Tardif S (1990) The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology 71, 1389–1400

    Article  Google Scholar 

  • Procksh P, Edrada-Ebel RA, Ebel R (2003) Drugs from the sea-opportunities and obstacles. Mar Drugs 1, 5–17

    Article  Google Scholar 

  • Pronzato R, Bavestrello G, Cerrano C, Magnino G, Manconi R, Pantelis J, Sarà A, Sidri M (1999) Sponge farming in the Mediterranean Sea: new perspectives. Mem Qld Mus 44, 485–491

    Google Scholar 

  • Ribes M, Coma R, Gili JM (1999) Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) through an annual cycle. Mar Ecol Prog Ser 176, 179–190

    Article  Google Scholar 

  • Rifai S, Fassoune A, Kijjoa A, Van Soest R (2004) Antimicrobial activity of Untenospongin B, a metabolite from the marine sponge Hippospongia communis collected from the Atlantic Coast of Morocco. Mar Drugs 2, 147–153

    CAS  Google Scholar 

  • Rinkevich B (2005) Marine invertebrate cultures: new millennium trends. Mar Biotechnol 7, 429–439

    Article  PubMed  CAS  Google Scholar 

  • Rinkevich B, Blisko R, Ilan M (1998) Further steps in the initiation of cell cultures from embryos and adult sponge colonies. In Vitro Cell Dev Biol 34, 753–756

    Article  CAS  Google Scholar 

  • Sarin PS, Sun D, Thornton A, Müller WEG (1987) Inhibition of replication of etiologic agent of AIDS by avarol and avarone. J Natl Cancer Inst 78, 663–666

    PubMed  CAS  Google Scholar 

  • Simpson TL (1984) The Cell Biology of Sponges (New York: Springer-Verlag)

    Google Scholar 

  • Sipkema D, Snijders APL, Schröen CGPH, Osinga R, Wijjffels R (2003) The life and death of sponge cells. Biotechnol Bioeng 85, 239–247

    Article  CAS  Google Scholar 

  • Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH (2005a) Marine sponges as pharmacy. Mar Biotechnol 7, 142–162

    Article  PubMed  CAS  Google Scholar 

  • Sipkema D, Osinga R, Schatton W, Mendola D, Tramper J, Wijjffels R (2005b) Large-scale production of pharmaceuticals by marine sponges: sea, cell or synthesis? Biotechnol Bioeng 90, 202–222

    Article  CAS  Google Scholar 

  • Sipkema D, Yosef NAM, Adamczewski M, Osinga R, Tramper J, Wijffels RH (2006) Hypothesized kinetic models for describing growth of globular and encrusting demosponges. Mar Biotechnol 8, 40–51

    Article  PubMed  CAS  Google Scholar 

  • Turon X, Galera J, Uriz MJ (1997) Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. J Exp Zoo 278, 22–36

    Article  Google Scholar 

  • Turon X, Tarjuelo I, Uriz MJ (1998) Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Funct Ecol 4, 631–639

    Article  Google Scholar 

  • Turon X, Galera J, de Caralt S, Tarjuelo I, Uriz MJ (2000) Pautas de crecimiento en esponjas incrustantes del Mediterranio: seguimiento a largo plazo de Crambe crambe (Poecilosclerida) y Dysidea avara (Dendroceratida). XI Simposium Ibérico: Estudios del Bentos Marino Málaga, Spain

  • Uriz MJ, Turon X, Becerro MA, Galera J, Lozano J (1995) Patterns of resource allocation to somatic, defensive, and reproductive functions in the Mediterranean encrusting sponge Crambe crambe (Demospongiae, Poecilosclerida). Mar Ecol Prog Ser 124, 159–170

    Article  Google Scholar 

  • Uriz MJ, Becerro MA, Tur JM, Turon X (1996a) Location of toxicity within the Mediterranean sponge Crambe crambe (Demospongiae: Poecilosclerida). Mar Biol 124, 583–590

    Article  CAS  Google Scholar 

  • Uriz MJ, Turon X, Galera J, Tur JM (1996b) New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell Tissue Res 285, 519–527

    Article  Google Scholar 

  • Uriz MJ, Maldonado M, Turon X, Martí R (1998) How do reproductive output, larval behaviour, and recruitment contribute to adult spatial patterns in Mediterranean encrusting sponges? Mar Ecol Prog Ser 167, 137–148

    Article  Google Scholar 

  • Von Ende CN (1993) Repeated measures analysis: growth and other time-dependent measures. In: Design and Analysis of Ecological Experiments, Scheneider SM, Gurevitch J, eds. (Oxford: Oxford University Press) pp 113–137

  • Zhang X, Cao X, Zhang W, Yu X, Jin M (2003) Primmorphs from archaeocytes-dominant cell population of the sponge Hymeniacidon perleve: improved cell proliferation and spiculogenesis. Biotechnol Bioeng 84, 583–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially funded by the project from the European Union INTERGEN CICYT: CTM2004-05265-C02-02/MAR. We thank M. Ribes, E. Cebrian, and A. Blanquer for their help in larval supply and field monitoring, and X. Turon for facilitating the program to perform the permutation tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sònia de Caralt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Caralt, S., Otjens, H., Uriz, M.J. et al. Cultivation of Sponge Larvae: Settlement, Survival, and Growth of Juveniles. Mar Biotechnol 9, 592–605 (2007). https://doi.org/10.1007/s10126-007-9013-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9013-5

Keywords

Navigation