Skip to main content

Advertisement

Log in

Relief of Arsenate Toxicity by Cd-Stimulated Phytochelatin Synthesis in the Green Alga Chlamydomonas reinhardtii

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In most photosynthetic organisms, inorganic arsenic taken up into the cells inhibits photosynthesis and cellular growth. In a green alga, Chlamydomonas reinhardtii, 0.5 mM arsenate inhibited photosynthesis almost completely within 30 min. However, in cells acclimated with a sublethal concentration (0.05 to 0.1 mM) of Cd, the inhibition of photosynthesis at 30 min after the addition of arsenate was relieved by more than 50%. The concentrations of arsenic incorporated into the cells were not significantly different between the Cd-acclimated and the non-acclimated cells. The Cd-acclimated cells accumulated Cd and synthesized phytochelatin (PC) peptides, which are known to play an important role in detoxification of heavy metals in plants. By the addition of an inhibitor of glutathione (an intermediate in the PC biosynthetic pathway) biosynthesis, buthionine sulfoximine, cells lost not only Cd tolerance but also arsenate tolerance. These results suggest that glutathione and/or PCs synthesized in Cd-acclimated cells are involved in mechanisms of arsenate tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • A Beck K Lendzian M Oven A Christmann E Grill (2003) ArticleTitlePhytochelatin synthase catalyzes key step in turnover of glutathione conjugates Phytochemistry 62 423–431 Occurrence Handle10.1016/S0031-9422(02)00565-4

    Article  Google Scholar 

  • P Bobrowicz R Wysocki G Owsianik A Goffeau S Ulaszewski (1997) ArticleTitleIsolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae Yeast 13 819–828 Occurrence Handle10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y

    Article  Google Scholar 

  • Y Cai J Su LQ Ma (2004) ArticleTitleLow molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements Environ Pollut 129 69–78 Occurrence Handle10.1016/j.envpol.2003.09.020

    Article  Google Scholar 

  • S Clemens EJ Kim D Neumann JI Schroeder (1999) ArticleTitleTolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeasts EMBO J 18 3325–3333 Occurrence Handle10.1093/emboj/18.12.3325

    Article  Google Scholar 

  • CS Cobbett (2000) ArticleTitlePhytochelatin biosynthesis and function in heavy-metal detoxification Curr Opin Plant Biol 3 211–216

    Google Scholar 

  • C Cobbett P Goldsbrough (2002) ArticleTitlePhytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis Annu Rev Plant Biol 53 159–182 Occurrence Handle10.1146/annurev.arplant.53.100301.135154

    Article  Google Scholar 

  • JS Edmonds KA Francesconi (1981) ArticleTitleArseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem Nature 289 602–604 Occurrence Handle10.1038/289602a0

    Article  Google Scholar 

  • S Fujiwara I Kobayashi S Hoshino T Kaise K Shimogawara H Usuda M Tsuzuki (2000) ArticleTitleIsolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii Plant Cell Physiol 41 77–83

    Google Scholar 

  • M Ghosh J Shen BP Rosen (1999) ArticleTitlePathways of As(III) detoxification in Saccharomyces cerevisiae Proc Natl Acad Sci USA 96 5001–5006

    Google Scholar 

  • OW Griffith A Meister (1979) ArticleTitlePotent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine) J Biol Chem 25 7558–7560

    Google Scholar 

  • E Grill E-L Winnaker MH Zenk (1985) ArticleTitlePhytochelatins: the principal heavy-metal complexing peptides of higher plants Science 230 674–676

    Google Scholar 

  • E Grill S Löffler E-L Winnacker MH Zenk (1989) ArticleTitlePhytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ–glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase) Proc Natl Acad Sci USA 86 6838–6842

    Google Scholar 

  • SB Ha AP Smith R Howden WM Dietrich S Bugg MJ O'Connell PB Goldsbrough CS Cobbett (1999) ArticleTitlePhytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe Plant Cell 11 1153–1163 Occurrence Handle10.1105/tpc.11.6.1153

    Article  Google Scholar 

  • EH Harris (1989) The Chlamydomonas Sourcebook Academic Press New York

    Google Scholar 

  • J Hartley-Whitaker G Ainsworth R Vooijs W Bookum ParticleTen H Schat AA Meharg (2001) ArticleTitlePhytochelatins involved in differential arsenate tolerance in Holcus lanatus Plant Physiol 126 299–306 Occurrence Handle10.1104/pp.126.1.299

    Article  Google Scholar 

  • DP Higham PJ Sadler MD Scawen (1984) ArticleTitleCadmium-resistant Pseudomonas putida synthesizes novel cadmium proteins Science 225 1043–1046

    Google Scholar 

  • R Howden PB Goldsbrough CR Andersen CS Cobbett (1995) ArticleTitleCadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient Plant Physiol 107 1059–1066

    Google Scholar 

  • G Howe S Merchant (1992) ArticleTitleHeavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii Plant Physiol 98 127–136

    Google Scholar 

  • M Inouhe R Ito S Ito N Sasada H Tohoyama M Joho (2000) ArticleTitleAzuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins Plant Physiol 123 1029–1036 Occurrence Handle10.1104/pp.123.3.1029

    Article  Google Scholar 

  • EP Ivanova VV Kurilenko AV Kurilenko NM Gorshkova FN Shubin DV Nicolau VP Chelomin (2002) ArticleTitleTolerance to cadmium of free-living and associated with marine animals and eelgrass marine gamma-proteobacteria Curr Microbiol 44 357–362 Occurrence Handle10.1007/s00284-001-0017-5

    Article  Google Scholar 

  • JHR Kägi Y Kojima (1987) Chemistry and Biochemistry of Metallothionein JHR Kägi Y Kojima (Eds) Metallothionein II, Experimentia SupplementumVol. 52 Birkhauser Verlag Basel 25–61

    Google Scholar 

  • T Kaise K Hanaoka S Tagawa T Hirayama S Fukui (1988) ArticleTitleDistribution of inorganic arsenic and methylated arsenic in marine organisms Appl Organomet Chem 2 539–546

    Google Scholar 

  • I Kobayashi S Fujiwara K Shimogawara T Kaise H Usuda M Tsuzuki (2003) ArticleTitleInsertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on Chlamydomonas Plant Cell Physiol 44 597–606

    Google Scholar 

  • N Kondo K Imai M Isobe T Goto A Murasugi CW Nakagawa Y Hayashi (1984) ArticleTitleCadystin A and B major unit peptides comprising cadmium-binding peptides induced in a fission yeast: separation, revision of structures and synthesis Tetrahedron Lett 25 3869–3872 Occurrence Handle10.1016/S0040-4039(01)91190-6

    Article  Google Scholar 

  • K Lerch (1980) ArticleTitleCopper metallothionein, a copper-binding protein from Neurospora crassa Nature 284 368–370 Occurrence Handle10.1038/284368a0

    Article  Google Scholar 

  • T Maitani H Kubota K Sato T Yamada (1996) ArticleTitleThe composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum Plant Physiol 110 1145–1150

    Google Scholar 

  • S Matsumoto K Shiraki N Tsuji K Hirata K Miyamoto M Takagi (2004) ArticleTitleFunctional analysis of phytochelatin synthase from Arabidopsis thaliana and its expression in Escherichia coli and Saccharomyces cerevisiae Sci Technol Adv Mater 5 377–381 Occurrence Handle10.1016/j.stam.2004.01.005

    Article  Google Scholar 

  • AA Meharg MR Macnair (1990) ArticleTitleAn altered phosphate uptake system in arsenate-tolerant Holcus lanatus L New Phytol 116 29–35

    Google Scholar 

  • AA Meharg MR Macnair (1992) ArticleTitleSuppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L J Exp Bot 43 519–524

    Google Scholar 

  • RK Mehra DR Winge (1991) ArticleTitleMetal ion resistance in fungi: molecular mechanisms and their regulated expression J Cell Biochem 45 30–40 Occurrence Handle10.1002/jcb.240450109

    Article  Google Scholar 

  • RK Mehra EB Tarbet WR Gray DR Winge (1988) ArticleTitleMetal-specific synthesis of two metallothioneins and γ-glutamyl peptides in Candida glabrata Proc Natl Acad Sci USA 85 8815–8819

    Google Scholar 

  • ML Mendum SC Gupta PB Goldsbrough (1990) ArticleTitleEffect of glutathione on phytochelatin synthesis in tomato cells Plant Physiol 93 484–488

    Google Scholar 

  • P Meuwly P Thibault AL Schwan WE Rauser (1995) ArticleTitleThree families of thiol peptides are induced by cadmium in maize Plant J 7 391–400 Occurrence Handle10.1046/j.1365-313X.1995.7030391.x

    Article  Google Scholar 

  • R Mukhopadhyay BP Rosen (1998) ArticleTitleSaccharomyces cerevisiae ACR2 gene encodes an arsenate reductase FEMS Microbiol Lett 168 127–136

    Google Scholar 

  • K Münger K Lerch (1985) ArticleTitleCopper metallothionein from the fungus Agaricus bisporus: chemical and spectroscopic properties Biochemistry 24 6751–6756

    Google Scholar 

  • A Murasugi C Wada Y Hayashi (1981) ArticleTitleCadmium-binding peptide induced in fission yeast, Shizosaccharomyces pombe J Biochem 90 1561–1564

    Google Scholar 

  • N Mutoh Y Hayashi (1988) ArticleTitleIsolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystins small cadmium-binding peptides Biochem Biophys Res Commun 151 32–39

    Google Scholar 

  • RW Olafson (1984) ArticleTitleProkaryotic metallothionein Int J Pept Protein Res 24 303–308

    Google Scholar 

  • A Raab J Feldmann AA Meharg (2004) ArticleTitleThe nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica Plant Physiol 134 1113–1122 Occurrence Handle10.1104/pp.103.033506

    Article  Google Scholar 

  • WE Rauser P Meuwly (1995) ArticleTitleRetention of cadmium in roots of maize seedlings: role of complexation by phytochelatins and related thiol peptides Plant Physiol 109 195–202

    Google Scholar 

  • H Rosenberg RG Gerdes K Chegwidden (1977) ArticleTitleTwo systems for the uptake of phosphate in Escherichia coli J Bacteriol 131 505–511

    Google Scholar 

  • MEV Schmöger M Oven E Grill (2000) ArticleTitleDetoxification of arsenic by phytochelatins in plants Plant Physiol 122 793–802

    Google Scholar 

  • S Silver (1996) ArticleTitleBacterial resistances to toxic metal ions—areview Gene 179 9–19 Occurrence Handle10.1016/S0378-1119(96)00323-X

    Article  Google Scholar 

  • CJ Steffens (1990) ArticleTitleThe heavy metal-binding peptides of plants Annu Rev Plant Physiol Plant Mol Biol 41 553–575

    Google Scholar 

  • N Tsuji N Hirayanagi M Okada H Miyasaka K Hirata MH Zenk K Miyamoto (2002) ArticleTitleEnhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis Biochem Biophys Res Commun 293 653–659 Occurrence Handle10.1016/S0006-291X(02)00265-6

    Article  Google Scholar 

  • OK Vatamaniuk S Mari Y-P Lu PA Rea (1999) ArticleTitleAtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution Proc Natl Acad Sci USA 96 7110–7115 Occurrence Handle10.1073/pnas.96.12.7110

    Article  Google Scholar 

  • OK Vatamaniuk S Mari Y-P Lu PA Rea (2000) ArticleTitleMechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides J Biol Chem 275 31451–31459 Occurrence Handle10.1074/jbc.M002997200

    Article  Google Scholar 

  • DR Winge KB Nielson WR Gray DH Hamer (1985) ArticleTitleYeast metallothionein sequence and metal-binding properties J Biol Chem 260 14464–14470

    Google Scholar 

  • R Wysocki P Bobrowicz S Ulaszewski (1997) ArticleTitleThe Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport JBiol Chem 272 30061–30066

    Google Scholar 

  • N Yoshida T Morinaga Y Murooka (1993) ArticleTitleIsolation and characterization of a heavy metal-binding protein from a heavy metal-resistant strain of Thiobacillus sp J Ferment Bioeng 76 25–28

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. K. Shimogawara of Teikyo University School of Medicine, Japan, and Dr. T. Kaise of Tokyo University of Pharmacy and Life Science, Japan, for helpful comments in the course of this study. This work was supported by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture, Japan (13640657, 13740463 and 13874112), the Promotion and Mutual Aid Corporation for Private Schools, CREST of Japan, and a Sasakawa Scientific Research Grant from The Japan Science Society to I. K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Tsuzuki.

Additional information

The authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, I., Fujiwara, S., Saegusa, H. et al. Relief of Arsenate Toxicity by Cd-Stimulated Phytochelatin Synthesis in the Green Alga Chlamydomonas reinhardtii. Mar Biotechnol 8, 94–101 (2006). https://doi.org/10.1007/s10126-005-5092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-005-5092-3

Keywords

Navigation