Skip to main content
Log in

Marine Invertebrate Cell Cultures: New Millennium Trends

  • Review
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

This review analyzes activities in the field of marine invertebrate cell culture during the years 1999 to 2004 and compares the outcomes with those of the preceding decade (1988 to 1998). During the last 5 years, 90 reports of primary cell culture studies of marine organisms belonging to only 6 taxa (Porifera, Cnidaria, Crustacea, Mollusca, Echinodermata, and Urochordata) have been published. This figure represents a 2-fold increase in the annual number of publications over the decade 1988 to 1998. Three other trends distinguish the two reviewed periods. First, in recent years studies attempting to improve cell culture methodologies have decreased, while interest in applications of already existing methodologies has increased. This reflects the effects of short-term cultures in attracting new researchers and scientific disciplines to the field. Second, only 17.8% of the recent publications used long-term cultures, compared with 30.0% of the publications in the previous decade. Third, during recent years research in cell cultures has studied fewer model species more extensively (mainly, Botryllus schlosseri, Crassostrea, Mytilus, Penaeus, and Suberites domuncula), signifying a shift from previous investigations that had studied a more diverse range of organisms. From 1988 to 1998 the phylum Mollusca was the most studied taxon (34.4%), but recent years have seen more studies of Porifera and Crustacea (30.0% and 32.2% of publications) than of Mollusca (21.1%). Still, not even a single established cell line from any marine invertebrate has yet been made available. However, the use of new cellular, genomic, and proteomic tools may fundamentally change our strategy for the development of cell cultures from marine invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarado-Alvarez R, Becerra E, Garcia U (1999) A high-resolution in vitro bioassay to identify neurons containing red pigment concentrating hormone. J Exp Biol 202:1777–1784

    PubMed  Google Scholar 

  • Andrade P, Willoughby R, Pomponi SA, Kerr RG (1999) Biosynthetic studies of the alkaloid, stevensine, in a cell culture of the marine sponge, Teichaxinella morchella. Tetrahedron Lett 40:4775–4778

    Article  Google Scholar 

  • Assavalapsakul E, Smith DR, Panyim S (2002) Propagation of infectious yellow head virus particles prior to cytopathic effect in primary lymphoid cell cultures of Penaeus monodon. Dis Aquat Org 55:253–258

    PubMed  Google Scholar 

  • Barik SK, Jena JK, Ram KJ (2004) CaCO3 crystallization in primary culture of mantle epithelial cells of freshwater pearl mussel. Curr Sci 86:730–734

    Google Scholar 

  • Bayne CJ (1998) Invertebrate cell cultures considerations: insects, ticks, shellfish and worms. Methods Cell Biol 57:187–201

    PubMed  Google Scholar 

  • Birmelin C, Pipe RK, Goldfarb PS, Livisntone DR (1999) Primary cell-culture of the digestive gland of the marine mussel Mytilus edulis; a time-course study of antioxidant- and biotransforamtion-enzyme activity and ultrastructural changes. Mar Biol 135:65–75

    Article  Google Scholar 

  • Boulo V, Cadoret JP, Shike H, Shimizu C, Miyanohara A, Burns JC (2000) Infection of cultured embryo cells of the Pacific oyster, Crassostrea gigas, by pantroic retroviral vectors. In Vitro Cell Dev Biol 36:395–399

    Article  Google Scholar 

  • Braasch DA, Ellender RD, Middlebrooks BL (1999) Cell cycle components and their potential impact on the development of continuous in vitro penaeid cell replication. Methods Cell Sci 21:255–261

    Article  PubMed  Google Scholar 

  • Buchanan JT, La Peyre JF, Cooper RK, Tiersch TR (1999) Improved attachment and spreading in primary cell cultures of the eastern oyster, Crassostrea virginica. In vitro Cell Dev Biol Anim 35:593–598

    PubMed  Google Scholar 

  • Bulgakov VP, Odintsova NA, Plotnikov SV, Kiselev KV, Zacharov EV, Zhuravlev YN (2002), Gal4-dependent alternations of embryo development and cell growth in primary culture of sea urchins. Mar Biotechnol 4:480–486

    Article  PubMed  Google Scholar 

  • Cao A, Mercado L, Ramos-Martinez JI, Barcia R (2003) Primary cultures of hemocytes from Mytilus galloprovincialis Lmk: expression of IL-2Rα subunit. Aquaculture 216:1–8

    Article  Google Scholar 

  • Chen SN, Wang CS (1999) Establishment of cell culture systems from penaeid shrimp and their susceptibility to white spot disease and yellow head viruses. Methods Cell Sci 21:199–206

    Article  PubMed  Google Scholar 

  • Chen SN, Wen CM (1999) Establishment of cell lines derived from oyster, Crassostrea gigas Thunberg and hard clam, Meretrix lusoria Röding. Methods Cell Sci 21:183–192

    Article  PubMed  Google Scholar 

  • Coraet M (2000) obtaining cell proliferation for chromosome preparation in gill tissue culture of the oyster Crassostrea gigas. Cytotechnology 32:1–7

    Article  Google Scholar 

  • Crane M St J (1999) Mutagenesis and cell transformation in cell culture. Methods Cell Sci 21, 245–253

    Google Scholar 

  • Custódio MR, Hajdu E, Muricy G (2004) Cellular dynamics of In vitro allogeneic reactions of Hymeniacidon heliophila (Demospongiae: Halichondrida). Mar Biol 144:999–1010

    Article  Google Scholar 

  • De Rosa S, De Caro S, Tommonaro G, Slantchev K, Stefano K, Popov S (2001) Development in primary culture of the marine sponge Ircinia muscarum and analysis of the polar compounds. Mar Biotechnol 3:281–286

    Article  PubMed  Google Scholar 

  • De Rosa S, Tommonaro G, Slantchev K, Stefanov K, Popov S (2002) Lipophylic metabolites from the marine sponge Ircinia muscarum and its cell cultures. Mar Biol 140:465–470

    Article  Google Scholar 

  • De Rosa S, De Caro S, Iodice C, Tommonaro G, Stefanov K, Popov S (2003) Development in primary cell culture of demosponges. J Biotechnol 100:119–125

    Article  PubMed  Google Scholar 

  • Diekmann-Schuppert A, Ruppel A, Burgert R, Frank W (1989) Echinococcus multilocularis: in vitro secretion of antigen by hybridomas from metacestode germinal cells and murine tumor cells. Exp Parasitol 68:186–191

    Article  PubMed  Google Scholar 

  • Domart-Coulon I, Auzoux-Bordenave S, Documenc D, Khalanski M (2000) Cytoxicity assessment of antifouling compounds and by-products in marine bivalve cell cultures. Toxicol In vitro 14:245–251

    Article  PubMed  Google Scholar 

  • Domart-Coulon I, Elbert DC, Scully EP, Calimlim PS, Ostrander GK (2001) Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral Pocillopora damicornis. Proc Natl Acad Sci U S A 98:11885–11890

    Article  PubMed  Google Scholar 

  • Domart-Coulon IJ, Sinclair CS, Hill RT, Tambutté S, Puverel S, Ostrander GK (2004). A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells. Mar Biol 144:583–592

    Article  Google Scholar 

  • Faucet J, Maurice M, Gagnaire B, Renault T, Burgeot T (2004) Isolation and primary culture of gill and digestive gland cells from the common mussel Mytilus edulis. Methods Cell Sci 25, 177–184

    Article  Google Scholar 

  • Faulkner DJ, Harper MK, Salomon CE, Schmidt EW (1999) Localisation of bioactive metabolites in marine sponges. Mem Qld Mus 44:167–173

    Google Scholar 

  • Frank U, Rinkevich B (1999) Scyphozoan jellyfish’s mesoglea supports attachment, spreading and migration of anthozoans’ cells in vitro. Cell Biol Int 23:307–311

    Article  PubMed  Google Scholar 

  • Fraser CA, Hall MR (1999) Studies on primary cell cultures derived from ovarian tissue of Penaeus monodon. Methods Cell Sci 21:213–218

    Article  PubMed  Google Scholar 

  • Ganter GK, Heinrich R, Bunge RPB, Kravitz EA (1999) Long-term culture of lobster central ganglia: expression of foreign genes in identified neurons. Biol Bull 197:40–48

    Google Scholar 

  • Gao CL, Sun JS, Xiang JH (2003) Primary culture and characteristic morphologies of medulla tenninalis neurons in the eyestalks of Chinese shrimp, Fenneropenaeus chinensis. J Exp Mar Biol Ecol 290:71–80

    Article  Google Scholar 

  • Gomot L (1971) The organotypic culture of invertebrates other than insects. In: Vago C, ed. Invertebrate Tissue Culture, (New York, NY: Academic Press), pp 41–136

    Google Scholar 

  • Goodwin RH (1991) Impediments to the culture of non-fibroblastoid cells from insects and other invertebrates and their resolution. In: 8th Int Conf. Invert Fish Tissue Cult. (Columbia, Md: Tissue Culture Association), pp 36–42

  • Huang J, Song XL, Yu J, Zhang LJ (1999) The components of an inorganic physiological buffer for Penaeus chinensis. Methods Cell Sci 21:225–230

    Article  PubMed  Google Scholar 

  • Hwang SP, Lin YC, Su YH, Chen CP (1999) Accelerated development of embryonic spicule and micromere-derived primary mesenchyme cell culture of the sea urchin Stomopneustes variolaris (Lamarck). Invert Reprod Dev 35:89–93

    Google Scholar 

  • Itami T, Maeda M, Kondo M, Takahashi Y (1999) Primary culture of lymphoid organ cells and haemocytes of kuruma shrimp, Penaeus japonicus. Methods Cell Sci 21:237–244

    Article  PubMed  Google Scholar 

  • Joshi B, Chatterji A, Bhonde R (2002) Long-term in vitro generation of amoebocytes from the Indian horseshoe crab Tachypleus gigas (Müller). In vitro Cell Dev Biol Anim 38:255–257

    Article  PubMed  Google Scholar 

  • Kamer I, Rinkevich B (2002) In vitro application of the comet assay for aquatic genotoxicity: considering a primary culture versus a cell line. Toxicol In vitro 16:177–184

    Article  PubMed  Google Scholar 

  • Kasornchandra J, Khongpradit R, Ekpanithanpong U, Boonyaratpalin S (1999) Progress in the development of shrimp cell cultures in Thailand. Methods Cell Sci 21:231–235

    Article  PubMed  Google Scholar 

  • Kelve M, Kuusksalu A, Lopp A, Reintamm T (2003) Sponge (2′, 5′) oligoadenylate synthetase activity in the whole sponge organism and in a primary cell culture. J Biotechnol 100:177–180

    Article  PubMed  Google Scholar 

  • Kopecky EJ, Ostrander GK (1999) Isolation and primary culture of viable multicellular endothelial isolates from hard corals. In vitro Cell Dev Biol Anim 35:616–624

    PubMed  Google Scholar 

  • Krasko A, Schröder HC, Batel R, Grebenjuk VA, Steffen R, Müller IM, Müller WEG (2002) Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 21:67–80

    Article  PubMed  Google Scholar 

  • Krasko A, Schröder HC, Perovic S, Steffen R, Kruse M, Müller IM, Müller WEG (1999) Ethylene modulates gene expression in cells of the marine sponge Suberites domuncula and reduces the degree of apoptosis. J Biol Chem 274:31524–31530

    Article  PubMed  Google Scholar 

  • Lang GH, Nomura N, Matsumura M, (2002a) Growth of cell division in shrimp (Penaeus japonicus) cell culture. Aquaculture 213:73–83

    Article  Google Scholar 

  • Lang GH, Nomura N, Wang B.-Z., Matsumura M, (2002b). Penaeid (Penaeus japonicus) lymphoid cells replicate by cell division in vitro. In vitro Cell Dev Biol Anim 38:142–145

    Article  Google Scholar 

  • Lang GH, Wang Y, Nomura N, Matsumura M (2004) Detection of telomerase activity in tissues and primary cultured lymphoid cells of Penaeus japonicus. Mar Biotechnol 6:347–354

    Article  PubMed  Google Scholar 

  • Le Marrec-Croq F, Gilaise D, Guguen-Guillouzo C, Chesne C, Guillouzo A, Boulo V, Dorange Gr (1999) Primary cultures of heart cells from the scallop Pecten maximus (Mollusca-Bivalvia). In vitro Cell Dev Biol 35:289–237

    PubMed  Google Scholar 

  • Le Pennec G, Le Pennec M (2001) Acinar primary cell culture from the digestive gland of Pecten maximus (L.): an original model for ecotoxicological purposes. J Exp Mar Biol Ecol 259:171–187

    Article  PubMed  Google Scholar 

  • Le Pennec G, Le Pennec M (2003) Induction of glutathione-S-transferases in primary cultured digestive gland acini form the mollusk bivalve Pecten maximus (L.): application of a new cellular model in biomonitoring studies. Aquat Toxicol 64:131–142

    Article  PubMed  Google Scholar 

  • Lizuka J, Azumi K, Yokosawa H (1997) Characterization of ascidian plasma growth factors promoting the proliferation of mouse thymocytes. Zool Sci 14:271–276

    Google Scholar 

  • Lopez JV, Peterson CL, Willoughby R, Wright AE, Enright E, Zoladz S, Reed JK, Pomponi SA (2002) Characterization of genetic markers for in vitro cell line identification of the marine sponge Axinella corrugata. J Hered 93:27–36

    Article  PubMed  Google Scholar 

  • Lynn DE (1989) Methods for the development of cell lines from insects. J Tissue Cult Methods 12:23–29

    Article  Google Scholar 

  • Lynn DE (1999) Development of insect cell lines: virus susceptibility and applicability to prawn cell culture. Methods Cell Sci 21:173–181

    Article  PubMed  Google Scholar 

  • Lyons-Alcantara M, Lambkin HA, Mothersill C (1999) Antigentic characterization of Nephrops norvegicus (L) hepatopancreas cells. Cell Biochem Function 17:157–164

    Article  Google Scholar 

  • Maeda M, Mizuki E, Itami T, Ohba M (2003) Ovarian primary tissue culture of the kuruma shrimp Marsupenaeus japonicus. In vitro Cell Dev Biol Anim 39:208–212

    Article  PubMed  Google Scholar 

  • Maeda M, Saitoh H, Mizuki E, Itami T, Ohba M (2004) Replication of white spot syndrome virus in ovarian primary cultures from the kuruma shrimp, Marsupenaeus japonicus. J Virol Methods 116:89–94

    Article  PubMed  Google Scholar 

  • Mitova M, Tommonaro G, Hentschel U, Müller WEG, De Rosa S (2004) Exocellular cyclic dipeptides from a Ruegeria strain associated with cell cultures of Suberites domuncula. Mar Biotechnol 3:100–102

    Article  Google Scholar 

  • Mo C, Rinkevich B (2001) A simple, reliable and fast protocol for thraustochytrids DNA extraction. Mar Biotechnol 3:100–102

    Google Scholar 

  • Mo C, Douek J, Rinkevich B (2002) Development of a PCR strategy for thraustochytrids identification based on 18S-rDNA sequence. Mar Biol 140:883–889

    Article  Google Scholar 

  • Moisseva E, Rabinowitz C, Yankelevich I, Rinkevich B (2004) “Cup cell” disease in the colonial tunicate Botryllus schlosseri. Dis Aquat Org 60:77–84

    PubMed  Google Scholar 

  • Mothersill C, Austin B (2000) Aquatic Invertebrate Cell Culture. (Berlin: Springer)

    Google Scholar 

  • Mulford AL, Lyng F, Mothersill C, Austin B (2001) Development and characterization of primary cell cultures from the hematopoietic tissues of the Dublin Bay prawn, Nephrops norvegicus. Methods Cell Sci 22:265–272

    Article  Google Scholar 

  • Müller WEG, Wiens M, Batel R, Steffen R, Custodio MR (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Prog Ser 178:205–219

    Google Scholar 

  • Müller WEG, Böhm M, Batel R, De Rosa S, Tommonaro G, Muller IM, Schröder HC (2000) Application of cell culture for the production of bioactive compounds form sponges: synthesis of avarol by primmorphs from Dysidea avara. J Nat Prod 63:1077–1081

    Article  PubMed  Google Scholar 

  • Nickel M, Leininger S, Proll N, Brümmer F (2001) Comparative studies on two potential methods for the biotechnological production of sponge biomass. J Biotechnol 92:169–178

    Article  PubMed  Google Scholar 

  • Odintsova NA, Belogortseva NI, Ermak AV, Molchanova VI, Luk’yanov PA (1999) Adhesive and growth properties of lectin from the ascidian Didemnum ternatanum on cultivated marine invertebrate cells. BBA 1448:381–389

    PubMed  Google Scholar 

  • Odintsova NA, Kiselev KV, Bulgakov VP, Koltsova EA, Yakovle KV (2003) Influence of the activator of transcription gal4 on growth and development of embryos and embryonic cells in primary cultures of sand dollar. Russ Dev Biol 34:217–222

    Article  Google Scholar 

  • Osinga R, Armstrong E, Burgess JG, Hoffmann F, Reitner J, Schumann-Kindel G (2001) Sponge-microbe-associations and their importance for sponge bioprocess engineering. Hydrobiologia 462:55–62

    Article  Google Scholar 

  • Owens L, Smith J (1999) Early attempts at production of prawn cell lines. Methods Cell Sci 21:207–211

    Article  PubMed  Google Scholar 

  • Pennec JP, Gallet M, Gioux M, Dorange G (2002) Cell culture of bivalves: tool for the study of the effects of environmental stressors. Cell Mol Biol 48:351–358

    PubMed  Google Scholar 

  • Ponnec JM, Serpentini A, Thiébot B, Villers C, Bocquet J, Bouccaud-Camou E, Lebel JM (2000) In vitro synthesis of proteoglycans and collagen in primary cultures of mantel cells from the nacreous mollusk, Haliotis tuberculata: a new model for study of molluscan extracellular matrix. Mar Biotechnol 2:387–398

    PubMed  Google Scholar 

  • Rabinowitz C, Rinkevich B (2003) Epithelial cell cultures from Botryllus schlosseri palleal buds: accomplishments and challenges. Methods Cell Sci 25:135–148

    PubMed  Google Scholar 

  • Rannou M (1971) Cell culture of invertebrates other than molluscs and arthropods. In: Invertebrate Tissue Culture, Vago, C, ed. (New York: Academic Press) 1:385–410

  • Richelle-Maurer E, Gomez R, Braekman JC, Van de Vyver G, Van Soest RWM, Devijver C (2003) Primary cultures from the marine sponge Xestospongia muta (Petrosiidae, Haposclerida). J Biotechnol 100:169–176

    Article  PubMed  Google Scholar 

  • Rinkevich B (1999) Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 100:133–153

    Article  Google Scholar 

  • Rinkevich B, Rabinowitz C (2000) Urochordate cell cultures: from in vivo to in vitro approaches. In: Austin B, Mothersill C, eds. Aquatic Invertebrate Cell Cultures, (NewYork, NY: Springer-Praxis), pp 225–244

    Google Scholar 

  • Rinkevich B, Frank U, Gateño D, Rabinowitz C (1994) The establishment of various cell lines from colonial marine invertebrates. In: Müller WEG, ed. Use of Aquatic Invertebrates as Tools for Monitoring of Environmental Hazards, (Stuttgart: Gustav Fischer Verlag), pp 253–263

    Google Scholar 

  • Rosenfield A (1993) Marine invertebrate cell culture: breaking the barriers. In: NOAA Technical Memorandum NMFS-F:NEC-98

  • Rosenfield A, Kern FG, Keller BJ (1994) Invertebrate neoplasia: initiation and promotion mechanisms. In: NOAA Technical Memo NMFS-NE-107

  • Schmid V, Ono SI, Reber-Müller S (1999) Cell-substrate interaction in Cnidaria. Micros Res Tech 44:254–268

    Article  Google Scholar 

  • Serpentini A, Ghayor C, Poncet JM, Hebert V, Galéra P, Pujol JP, Boucaud-Camou E, Lebel JM (2000) Collagen study and regulation of the de novo synthesis by IGF-I in hemocytes from the gastropod mollusc Haliotis tuberculata. J Exp Zool 287:275–284

    Article  PubMed  Google Scholar 

  • Sheehan D (2000) Applications of invertebrate cell culture in studies of biomarkers and ecotoxicology. In: Mothersill C, Austin B, eds. Aquatic Invertebrate Cell Culture (Berlin, Germany, Springer), pp 337–359

    Google Scholar 

  • Shike H, Shimizu C, Kimpel KS, Burns JC (2000) Expression of foreign genes in primary cultured cells of the blue Shrimp Penaeus stylirostris. Mar Biol 137, 605–611

    Article  Google Scholar 

  • Shimizu C, Shike H, Klempel KR, Burns JK (2001) Hemolymph analysis and evaluation of newly formulated medium for culture of shrimp cells (Penaeus stylirostris). In vitro Cell Dev Biol Anim 37A:322–329

    Article  Google Scholar 

  • Sipkema D, Heilig HGHJ, Akkerman ADL, Osinga R, Trampe J, Wijffels RH (2003a). Sponge cell culture? A molecular identification method for sponge cells. Cell Mar Biotechnol 5:443–449

    Article  Google Scholar 

  • Sipkema D, Van Wielink R, Van Lammeren AAM, Tramper J, Osinga R, Wijffels RH (2003b). Primmorphs from seven marine sponges: formation and structure. J Biotechnol 100:127–139

    Article  Google Scholar 

  • Sipkema D, Snijders APL, Schröen CGPH, Osinga R, Wijffels RH (2004) The life and death of sponge cells. Biotechnol Bioeng 85:239–247

    Article  PubMed  Google Scholar 

  • Stephanyan R, Hollins B, Brock SE, McClintock TS (2004) Primary culture of lobster (Homarus americanus) olfactory sensory neurons. Chem Senses 29:179–187

    Article  PubMed  Google Scholar 

  • Sud D, Doumen D, Lopez E, Milet C (2001) Role of water-soluble matrix fraction, extracted from the nacre of Pinctada maxima, in the regulation of cell activity in abalone mantle cell culture (Haliotis tuberculata). Tissue Cell 33:154–160

    Article  PubMed  Google Scholar 

  • Takeuchi Y, Inoue K, Miki D, Odo S, Harayama S (1999) Cultured mussel foot cells expressing byssal protein genes. J Exp Zool 283:131–136

    Article  Google Scholar 

  • Toullec JY (1999) Crustacean primary cell culture: a technical approach. Methods Cell Sci 21:193–198

    Article  PubMed  Google Scholar 

  • Walton A, Smith VJ (1999) Primary culture of hyaline haemocytes from marine decapods. Fish Shellfish Immunol 9:181–194

    Article  Google Scholar 

  • Wang WN, Liang H, Wang AL, Chen T, Zhang SE, Sun RY (2001) Effect of pH and Zn2+ on subcultured muscle cells from Macrobrachium nipponense. Methods Cell Sci 22:277–284

    Article  Google Scholar 

  • West L, Mahony T, McCarthy F, Watanabe J, Hewitt D, Hansford S (1999) Primary cell cultures isolated from Penaeus monodon prawns. Methods Cell Sci 21:219–223

    Article  PubMed  Google Scholar 

  • Willoughby R, Pomponi SA (2000) Quantitative assessment of marine sponge cell in vitro: development of improved growth medium. In Vitro Cell Dev Biol Anim 36:194–200

    Article  PubMed  Google Scholar 

  • Zhang W, Zhang X, Cao X, Xu I, Zhao Q, Yu X, Jin M, Deng M (2003) Optimizing the formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminate (Ridley). J Biotechnol 100:161–168

    Article  PubMed  Google Scholar 

  • Zhang X, Cao X, Zhang W, Yu X, Jin M (2003). Primmorphs from archaeocytes-dominant cell population of the sponge Hymeniacidon perleve: improved cell proliferation and spiculogenesis. Biotechnol Bioeng 84:583–590

    Article  PubMed  Google Scholar 

  • Zhang X, Le Pennec G, Steffen R, Müller WEG, Zhang W (2004) Application of a MTT assay for screening nutritional factors in growth media of primary sponge cell culture. Biotechnol Prog 20:151–155

    Article  PubMed  Google Scholar 

  • Zhao Q, Jin M, Müller WEG, Zhang W, Yu X, Deng M (2003) Attachment of marine sponge cells of Hymeniacidon perleve on microcarriers. Biotechnol Prog 19:1569–1573

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch Rinkevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinkevich, B. Marine Invertebrate Cell Cultures: New Millennium Trends. Mar Biotechnol 7, 429–439 (2005). https://doi.org/10.1007/s10126-004-0108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-004-0108-y

Keywords

Navigation