Skip to main content
Log in

Cadmium Interaction with Microalgal Cells, Cyanobacterial Cells, and Seaweeds; Toxicology and Biotechnological Potential for Wastewater Treatment

  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The accumulation of cadmium (Cd) by Tetraselmis chuii and Spirulina maxima was studied with dead and growing cells. Results indicated that the 2 microorganisms accumulated Cd by 2 different means according to the mechanisms involved—metabolism-dependent or metabolism-independent sorption. The mechanism involved in Cd accumulation on Tetraselmis chuii was restricted to surface phenomena, while in Spirulina maxima, Cd was accumulated on different layers of the cyanobacterium surface. In order to select a suitable immobilization support for the cells, several seaweeds were tested. Two types of seaweed were selected for experiments, using a small continuous pilot unit: Sargassum sp., a strong Cd adsorber, and Ulva sp., a poor one. The column reactors of the continuous system were filled with the algal supports and covered with dense microbial biofilms of Tetraselmis chuii or Spirulina maxima. The results obtained proved the success of the association between living microbial cells and dead seaweeds for operation of the continuous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. InstitutionalAuthorNameAPHA (1989) . L.S. Clesceri A.E. Greenberg R.R. Trussel (Eds) Standard Methods for the Examination of Water and Wastewater, 17th ed. American Public Health Association

    Google Scholar 

  2. S.H. Brawley R. Wetherbee (1981) ArticleTitleCytology and ultrastructure: the biology of seaweeds. Bot Monogr 17 248–299

    Google Scholar 

  3. A.C.A. da Costa (1997) ArticleTitleAn emerging biotechnology for metal containing waste water treatment. Serie Tecnologia Ambiental 17.1 .

    Google Scholar 

  4. A.C.A. da Costa (1999) Chemical interactions between mercurial species and surface biomolecules from structural components of some biological systems. Mercury In Contaminated Sites: Risk Assessment And Solutions, Environmental Science Series. Chapter I-8 Springer-Verlag Heildelberg 159–178

    Google Scholar 

  5. A.C.A. da Costa (2000) Macroalgas marinhas como bioacumuladores de elementos metálicos. G.R. Fuentes P.A. Garcia (Eds) Catalizadores y Adsorbentes Iberoamericanos para la Remoción de Metales Pesados de Efluentes Industriales CYTED Madrid, Spain 146–157

    Google Scholar 

  6. A.C.A. da Costa F.P. Duta (2001) ArticleTitleBioaccumulation of cadmium, zinc, copper and lead by Bacillus sp., Bacillus sphaericus, Bacillus cereus and Bacillus subtilis. Braz J Microb 37 1–5

    Google Scholar 

  7. A.C.A. da Costa F.P. de França (1996) ArticleTitleCadmium uptake by biosorption seaweeds: adsorption isotherms and some process conditions. Sep Sci Technol 31 2373–2393 Occurrence Handle1:CAS:528:DyaK28XmtVKlt74%3D

    CAS  Google Scholar 

  8. A.C.A. da Costa L.M.S. Mesquita J. Tornovsky (1996) ArticleTitleBatch and continuous heavy metals biosorption by a brown seaweed from a Zn-producing plant. Min Engng 9 811–824 Occurrence Handle10.1016/0892-6875(96)00074-X Occurrence Handle1:CAS:528:DyaK28Xks1Clu7k%3D

    Article  CAS  Google Scholar 

  9. C.A.M. Ferraz E. Aquarone G. Florenzano W. Balloni M. Tredici (1985) ArticleTitleUtilização de subprodutos da indústria alcooleira na obtenção de biomassa de Spirulina maxima, I: emprego de anidrido carbônico. Rev Microbiol 16 179–187 Occurrence Handle1:CAS:528:DyaL2MXmtFegtrs%3D

    CAS  Google Scholar 

  10. E. Fourest B. Volesky (1996) ArticleTitleContribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Technol 30 277–282 Occurrence Handle10.1021/es950315s Occurrence Handle1:CAS:528:DyaK2MXpsFyku70%3D

    Article  CAS  Google Scholar 

  11. R.M. Gladue J.E. Maxey (1994) ArticleTitleMicroalgal feeds for aquaculture. J Appl Phycol 6 131–141

    Google Scholar 

  12. H.C.H. Hahne W. Kroontje (1973) ArticleTitleSignificance of pH and chloride concentration on behavior of heavy metal pollutants: mercury (II), cadmium (II), zinc (II), and lead (II). J Env Qual 2 444–450 Occurrence Handle1:CAS:528:DyaE2cXmtlGkug%3D%3D

    CAS  Google Scholar 

  13. A. Huber R.A. Lewin (1986) ArticleTitleAn eletrophoretic survey of the genus Tetraselmis (Chlorophyta, Prasinophyceae). Phycologia 25 205–209

    Google Scholar 

  14. P. Kaewsarn Q. Yu (2001) ArticleTitleCadmium (II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp. Envir Poll 112 209–213 Occurrence Handle10.1016/S0269-7491(00)00114-7 Occurrence Handle1:CAS:528:DC%2BD3MXjsVemtLY%3D

    Article  CAS  Google Scholar 

  15. C. Munger L. Hare (1997) ArticleTitleRelative importance of water and food as cadmium sources to an aquatic insect (Chaoborus punctipennis): implications for predicting cadmium bioaccumulation in nature. Environ Sci Technol 31 891–895 Occurrence Handle1:CAS:528:DyaK2sXotVWksQ%3D%3D

    CAS  Google Scholar 

  16. K. Robards P. Worsfold (1991) ArticleTitleCadmium: toxicology and analysis. Analyst 116 549–568 Occurrence Handle1:CAS:528:DyaK3MXkvVCht7o%3D Occurrence Handle1928728

    CAS  PubMed  Google Scholar 

  17. C. Santillan (1982) ArticleTitleMass production of Spirulina. Experientia 38 40–43 Occurrence Handle1:CAS:528:DyaL38XmslWrtw%3D%3D

    CAS  Google Scholar 

  18. R. Stringer D. Santillo I. Labunska K. Bridgen (2000) Pollution with organic tin compounds, organochlorines, hydrocarbons and metals in sediment samples from Guanabara Bay. Rio de Janeiro Brazil

    Google Scholar 

  19. A.P.M. Tavares F.P. de França A.C.A. da Costa (2002) ArticleTitleCalcium interference with continuous biosorption of zinc by Sargassum sp. (Phaeophyceae) in tubular laboratory reactors. Biores Technol 83 159–163 Occurrence Handle10.1016/S0960-8524(01)00198-5

    Article  Google Scholar 

  20. M. Tsezos (2001) ArticleTitleBiosorption of metals. The experience accumulated and the outlook for technology development. Hydrometallurgy 59 241–243 Occurrence Handle10.1016/S0304-386X(99)00056-0 Occurrence Handle1:CAS:528:DC%2BD3MXht1Khs7o%3D

    Article  CAS  Google Scholar 

  21. E. Valdman L. Erijman F.L.P. Pessoa S.G.F. Leite (2001) ArticleTitleContinuous biosorption of copper and zinc by immobilized waste biomass Sargassum sp. Proc Biochem 36 869–873 Occurrence Handle10.1016/S0032-9592(00)00288-0 Occurrence Handle1:CAS:528:DC%2BD3MXjtVaktLw%3D

    Article  CAS  Google Scholar 

  22. C. van Eykelenburg (1977) ArticleTitleOn the morphology and ultrastructure of the cell wall of Spirulina platensis. Antonie Van Leeuwenhoek 43 89–99 Occurrence Handle1:STN:280:CSeD2sbit1I%3D Occurrence Handle413479

    CAS  PubMed  Google Scholar 

  23. C. van Eykelenburg (1979) ArticleTitleThe ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie Van Leeuwenhoek 45 369–390 Occurrence Handle1:CAS:528:DyaE1MXmtVOjsr0%3D Occurrence Handle233414

    CAS  PubMed  Google Scholar 

  24. C. van Eykelenburg (1980) ArticleTitleEcophysiological studies on Spirulina platensis—effect of temperature, light intensity and nitrate concentration on growth and ultrastructure. Antonie Van Leeuwen hoek 46 113–127 Occurrence Handle1:CAS:528:DyaL3cXltFSgt7k%3D

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho National do Desenvolvimento Científico e Tecnológico (CNPq) and the Universidade do Estado do Rio de Janeiro (UERJ) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Carlos Augusto da Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa, A., de França, F. Cadmium Interaction with Microalgal Cells, Cyanobacterial Cells, and Seaweeds; Toxicology and Biotechnological Potential for Wastewater Treatment . Mar. Biotechnol. 5, 149–156 (2003). https://doi.org/10.1007/s10126-002-0109-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-002-0109-7

Keywords

Navigation