Skip to main content
Log in

Characterization of rhizospheric fungi and their in vitro antagonistic potential against myco-phytopathogens invading Macrotyloma uniflorum plants

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms have become more resistant to pesticides, which increases their ability to invade and infect crops resulting in decreased crop productivity. The rhizosphere plays a crucial role in protecting plants from harmful invaders. The purpose of the study was to investigate the antagonistic efficiency of indigenous rhizospheric fungal isolates against phytopathogens of M. uniflorum plants so that they could be further used as potent Biocontrol agents. Thirty rhizospheric fungal isolates were collected from the roots of the Macrotyloma uniflorum plant and initially described morphologically for the present study. Further, in vitro tests were conducted to evaluate the antifungal activity of these strains against four myco-phytopathogens namely Macrophamina phaseolina, Phomopsis sp. PhSFX-1, Nigrospora oryzae, and Boeremia exigua. These pathogens are known to infect the same crop plant, M. uniflorum, and cause declines in crop productivity. Fifteen fungal strains out of the thirty fungal isolates showed some partial antagonistic activity against the myco-phytopathogens. The potent fungal isolates were further identified using molecular techniques, specifically based on the internal transcribed spacer (ITS) region sequencing. Penicillium mallochii, Cladosporium pseudocladosporioides, Aspergillus chevalieri, Epicoccum nigrum, Metarhizium anisopliae, and Mucor irregularis were among the strains that were identified. These potent fungal strains showed effective antagonistic activity against harmful phytopathogens. Current findings suggest that these strains may be taken into consideration as synthetic fungicides which are frequently employed to manage plant diseases alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Adedayo AA, Babalola OO, Prigent-Combaret C, Cruz C, Stefan M, Kutu F, Glick BR (2022) The application of plant growth-promoting rhizobacteria in Solanum lycopersicum production in the agricultural system: a review. PeerJ 10:e13405

    Article  PubMed  PubMed Central  Google Scholar 

  • Akinola SA, Babalola OO (2021) The fungal and archaeal community within plant rhizosphere: a review on their contribution to crop safety. J Plant Nutr 44(4):600–618

    Article  CAS  Google Scholar 

  • Anwar A, Bhat M, Ganaie N, Ambardar VK, Hassan MG (2017) Prevalence and management through relative performance of organic mulches and fungi toxicants of noxious Phomopsis fruit rot (Phomopsis vexans, Sacc. & Syd.) Harter, in brinjal ecology of Kashmir. Innov Pharm J 6:318–323

    CAS  Google Scholar 

  • Asad HA, Meah MB, Begum SN, Khalil MI, Rafii MY, Latif MA (2015) Study of genetic variation of eggplant cultivars by using RAPD-PCR molecular markers and the relationship with Phomopsis blight disease reaction. Genet Mol Res 14(4):17007–17018

    Article  CAS  PubMed  Google Scholar 

  • Attia MS, Abdelaziz AM, Al-Askar AA, Arishi AA, Abdelhakim AM, Hashem AH (2022) Plant growth-promoting fungi as biocontrol tool against fusarium wilt disease of tomato plant. J Fungi 8(8):775

    Article  CAS  Google Scholar 

  • Banaras S, Javaid A, Shoaib A (2020) Non-chemical control of charcoal rot of urdbean by Sonchus oleraceous application. Planta Daninha 38:e020216088

    Article  Google Scholar 

  • Banerjee A, Panja B (2020) First report of Boeremia exigua var. exigua as a pathogen of Cycas circinalis in India. J Plant Pathol 102:935–936

    Article  Google Scholar 

  • Basandrai AK, Pandey AK, Somta P, Basandrai D (2021) Macrophomina phaseolina–host interface: insights into an emerging dry root rot pathogen of mungbean and urdbean, and its mitigation strategies. Plant Pathol 70(6):1263–1275

    Article  Google Scholar 

  • Berner D, Cavin C, Woudenberg JH, Tunali B, Büyük O, Kansu B (2015) Assessment of Boeremia exigua var. rhapontica, as a biological control agent of Russian knapweed (Rhaponticum repens). Biol Control 81:65–75

    Article  CAS  Google Scholar 

  • Berry PM, Sylvester-Bradley R, Philipps L, Hatch DJ, Cuttle SP, Rayns FW, Gosling P (2002) Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag 18:248–255

    Article  Google Scholar 

  • Bonanomi G, Gaglione SA, Cesarano G, Sarker TC, Pascale M, Scala F, Zoina A (2017) Frequent applications of organic matter to agricultural soil increase fungistasis. Pedosphere 27(1):86–95

    Article  CAS  Google Scholar 

  • Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., ... & Zaretskaya, I. (2013). BLAST: a more efficient report with usability improvements. Nucleic acids research, 41(W1), W29-W33

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232:147–154

    Article  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124(1–2):3–22

    Article  CAS  Google Scholar 

  • Brumer, B. B., Lopes-Caitar, V. S., Chicowski, A. S., Beloti, J. D., Castanho, F. M., Gregório da Silva, D. C., ... & Marcelino-Guimarães, F. C. (2018). Morphological and molecular characterization of Diaporthe (anamorph Phomopsis) complex and pathogenicity of Diaporthe aspalathi isolates causing stem canker in soybean. Eur J Plant Pathol, 151:1009–1025

  • Bulluck Iii LR, Brosius M, Evanylo GK, Ristaino JB (2002) Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl Soil Ecol 19(2):147–160

    Article  Google Scholar 

  • Cantabella D, Dolcet-Sanjuan R, Casanovas M, Solsona C, Torres R, Teixidó N (2020) Inoculation of in vitro cultures with rhizosphere microorganisms improve plant development and acclimatization during immature embryo rescue in nectarine and pear breeding programs. Sci Hortic 273:109643

    Article  CAS  Google Scholar 

  • Cha, J. Y., Han, S., Hong, H. J., Cho, H., Kim, D., Kwon, Y., ... & Kwak, Y. S. (2016). Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J, 10(1):119–129

  • Chaisiri C, Liu XY, Lin Y, Li JB, Xiong B, Luo CX (2020) Phylogenetic analysis and development of molecular tool for detection of Diaporthe citri causing melanose disease of citrus. Plants 9(3):329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chander H (2016) Diversity and distribution of macrofungi and lichens in the Nanda Devi Biosphere Reserve. Biological Diversity and Ecology. Discovery Publishing House, New Delhi, pp 184–207

    Google Scholar 

  • Correia KC, de Queiroz JVJ, Martins RB, Nicoli A, Del Ponte EM, Michereff SJ (2017) Development and evaluation of a standard area diagram set for the severity of phomopsis leaf blight on eggplant. Eur J Plant Pathol 149:269–276

    Article  Google Scholar 

  • Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34(4):467–476

    Article  CAS  Google Scholar 

  • Dutta J, Gupta S, Thakur D, Handique PJ (2015) First report of Nigrospora leaf blight on tea caused by Nigrospora sphaerica in India. Plant Dis 99(3):417–417

    Article  CAS  PubMed  Google Scholar 

  • Ebada SS, Eze P, Okoye FB, Esimone CO, Proksch P (2016) The fungal endophyte Nigrospora oryzae produces quercetin monoglycosides previously known only from plants. ChemistrySelect 1(11):2767–2771

    Article  CAS  Google Scholar 

  • El-Masry MH, Khalil AI, Hassouna MS, Ibrahim HAH (2002) In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J Microbiol Biotechnol 18:551–558

    Article  CAS  Google Scholar 

  • Gao, P., Nan, Z. B., Christensen, M. J., Barbetti, M. J., Duan, T. Y., Liu, Q. T., ... & Huang, J. F. (2019). Factors influencing rust (Melampsora apocyni) intensity on cultivated and wild Apocynum venetum in Altay Prefecture, China. Phytopathology, 109(4):593–606

  • Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31(1):1–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorny AM, Kikkert JR, Dunn AR, Dillard HR, Smart CD, Pethybridge SJ (2015) Tan spot of lima bean caused by Boeremia exigua var. exigua in New York State, USA. Can J Plant Pathol 37(4):523–528

    Article  CAS  Google Scholar 

  • Grinbergs, D. E., & France, R. A. (2014, November). Black root rot of industrial chicory (Cichorium intybus L. var. sativum) in Chile caused by Boeremia exigua var. exigua. In Phytopathology 104(11):47–47. 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA: AMER PHYTOPATHOLOGICAL SOC

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5(4):10–1128

    Article  Google Scholar 

  • Hussain I, Alam SS, Khan I, Shah B, Naeem A, Khan N, ... & Iqbal, M (2016) Study on the biological control of fusarium wilt of tomato. J EntomolZool Studies 4(2):525-8

  • Jia W, Luo M, Wei T, Zhang H, Zeng Y, Jiang Y (2024) Nigrospora musae and N. oryzae as new causal agents of broad bean leaf spot disease in China. Crop Prot 177:106567

  • Kadir S, Umaerus V (1987) Varietal differences to infection of potato stems by the gangrene pathogen Phoma Exigua Var Foveata. Potato Res 30:1–8

    Article  Google Scholar 

  • Khan IH, Javaid A (2020) Comparative antifungal potential of stem extracts of four quinoa varieties against Macrophomina phaseolina. Int J Agric Biol 24(3):441–446

    CAS  Google Scholar 

  • Khan IH, Javaid A (2022a) DNA cleavage of the fungal pathogen and production of antifungal compounds are the possible mechanisms of action of biocontrol agent Penicillium italicum against Macrophomina phaseolina. Mycologia 114(1):24–34

    Article  CAS  PubMed  Google Scholar 

  • Khan IH, Javaid A (2022b) Antagonistic activity of Aspergillus versicolor against Macrophomina phaseolina. Braz J Microbiol 53(3):1613–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan IH, Javaid A, Ahmed D (2021) Trichoderma viride controls Macrophomina phaseolina through its DNA disintegration and production of antifungal compounds. Int J Agric Biol 25(4):888–894

    Article  CAS  Google Scholar 

  • Kuzin A, Solovchenko A, Stepantsova L (2020) Soil fertility management in apple orchard with microbial biofertilizers. E3S Web of Conferences (Vol. 222, p. 03020). EDP Sciences

    Google Scholar 

  • Lan Y, Duan T (2022) Characterization of Boeremia exigua causing stem necrotic lesions on Luobuma in northwest China. Sci Rep 12(1):21609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang C, Liang W, Liu S (2021) Rhizosphere microbiome: the emerging barrier in plant-pathogen interactions. Front Microbiol 12:772420

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodha S, Mawar R (2020) Population dynamics of Macrophomina phaseolina in relation to disease management: a review. J Phytopathol 168(1):1–17

    Article  Google Scholar 

  • Marquez N, Giachero ML, Declerck S, Ducasse DA (2021) Macrophomina phaseolina: general characteristics of pathogenicity and methods of control. Front Plant Sci 12:634397

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, F. M., Perotto, S., & Bonfante, P. (2000). Mycorrhizal fungi: a fungal community at the interface between soil and roots. In The rhizosphere (pp. 279–312). CRC Press

    Google Scholar 

  • McQuilken MP, Whipps JM, Lynch JM (1994) Effects of water extracts of a composted manure-straw mixture on the plant pathogen Botrytis cinerea. World J Microbiol Biotechnol 10:20–26

    Article  CAS  PubMed  Google Scholar 

  • Melero S, Porras JCR, Herencia JF, Madejon E (2006) Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil and Tillage Research 90(1–2):162–170

    Article  Google Scholar 

  • Michel VV, Daepp M, Woudenberg JH, de Gruyter J, de Wit PJ (2018) First report of Boeremia exigua var. exigua causing stem and leaf spot on common speedwell in Switzerland. Plant Disease 102(2):440–440

    Article  Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Tech 15(1):3–20

    Article  Google Scholar 

  • Paulina A, Fatima M, Sagaya GR (2016) Studies on soil mycoflora in different tomato fields of four districts in Tamil Nadu, India. Int J Curr Microbiol App Sci 5(7):92–99

    Article  Google Scholar 

  • Rawat J, Sanwal P, Saxena J, Prasad R (2023a) Exploring the biochar as a suitable carrier for a bioinoculant Aspergillus niger K7 and its consequence on Eleusine coracana in field studies. Journal of Agriculture and Food Research 14:100825

    Article  CAS  Google Scholar 

  • Rawat J, Saxena J, Sanwal P, Maddela NR, Nain L, Prasad R (2023b) Improving the growth and productivity of Macrotyloma uniflorum medicinal plant by the co-inoculation of P, Zn and K-solubilizing fungi under field conditions. Curr Microbiol 80(9):277

    Article  CAS  PubMed  Google Scholar 

  • Rawat J, Yadav N, Pande V (2020) Role of rhizospheric microbial diversity in plant growth promotion in maintaining the sustainable agrosystem at high altitude regions. Recent Advancements in Microbial Diversity. Academic Press, pp 147–196

    Chapter  Google Scholar 

  • Raza G, Ali K, Mukhtar Z, Mansoor S, Arshad M, Asad S (2010) The response of sugarcane (Saccharum officinarum L) genotypes to callus induction, regeneration and different concentrations of the selective agent (geneticin-418). Afr J Biotech 9(51):8739–8747

    CAS  Google Scholar 

  • Ross LN, Woodward JF (2016) Koch’s postulates: an interventionist perspective. Stud Hist Philos Sci A 59:35–46

  • Shasmita, Swain BB, Mohapatra PK, Naik SK, Mukherjee AK (2022) Biopriming for induction of disease resistance against pathogens in rice. Planta 255(6):113

    Article  CAS  PubMed  Google Scholar 

  • de Sousa Linhares CM, Ambrósio MMQ, Castro G, Torres SB, Esteras C, de Sousa Nunes GH, Picó B (2020) Effect of temperature on disease severity of charcoal rot of melons caused by Macrophomina phaseolina: implications for selection of resistance sources. Eur J Plant Pathol 158:431–441

    Article  Google Scholar 

  • Suárez-Estrella F, Vargas-Garcia C, Lopez MJ, Capel C, Moreno J (2007) Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Protection 26(1):46–53

    Article  Google Scholar 

  • Tan Y, Cui Y, Li H, Kuang A, Li X, Wei Y, Ji X (2017) Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol Res 194:10–19

    Article  PubMed  Google Scholar 

  • Teja TS, Kelayia DS, Asha R (2020) Impact of environmental factors on Macrophomina phaseolina causing charcoal rot of soybean. Int J Curr Microbiol App Sci 9:3784–3790

    Article  Google Scholar 

  • Udayanga D, Liu X, McKenzie EH, Chukeatirote E, Bahkali AH, Hyde KD (2011) The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers 50:189–225

    Article  Google Scholar 

  • Van Warmelo KT, Marasas WFO, Adelaar TF, Kellerman TS, Van Rensburg IBJ, Minne J (1970) Experimental evidence that lupinosis of sheep is a mycotoxicosis caused by the fungus, Phomopsis leptostromiformis(Kuhn) Bubak. J S Afr Vet Assoc 41(3):235–247

    Google Scholar 

  • Wang M, Liu F, Crous PW, Cai L (2017) Phylogenetic reassessment of Nigrospora: ubiquitous endophytes, plant and human pathogens. Persoonia 39(1):118–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40(1):309–348

    Article  CAS  PubMed  Google Scholar 

  • Wright ER, Folgado M, Rivera MC, Crelier A, Vasquez P, Lopez SE (2008) Nigrospora sphaerica causing leaf spot and twig and shoot blight on blueberry: a new host of the pathogen. Plant Dis 92(1):171–171

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019) Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Diversity 98:1–76

    Article  CAS  Google Scholar 

  • Zhao H, Liu HY, Yang XS, Liu YX, Ni YX, Wang F, Tang L (2014) First report of Nigrospora leaf blight on sesame caused by Nigrospora sphaerica in China. Plant Dis 98(6):842–842

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by P.P. and A.N. The first draft of the manuscript was written by P.P., J.R. and R.K. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Pooja Pant or Rishendra Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, P., Negi, A., Rawat, J. et al. Characterization of rhizospheric fungi and their in vitro antagonistic potential against myco-phytopathogens invading Macrotyloma uniflorum plants. Int Microbiol (2024). https://doi.org/10.1007/s10123-024-00520-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-024-00520-y

Keywords

Navigation