Skip to main content
Log in

Investigating the role of Lactiplantibacillus plantarum vs. spontaneous fermentation in improving nutritional and consumer safety of the fermented white cabbage sprouts

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation, i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5–7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum-inoculated fermentation, and spontaneous fermentation. Plant material was dehydrated at 40 °C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/100 g d.w.), Mg (204 mg/100 g d.w.), Fe (9.3 mg/100 g d.w.), Zn (5 mg/100 g d.w.), and Cu (0.5 mg/100 g d.w.) were recorded in IF-BCS. L. plantarum-led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 and 56%. The results suggest L. plantarum-led lactic acid fermentation coupled with sprout blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be available on request.

References

  • Abellán Á, Domínguez-Perles R, Moreno DA, García-Viguera C (2019) Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients 11:429–451

    Article  PubMed  PubMed Central  Google Scholar 

  • Akinola SA, Badejo AA, Osundahunsi OF, Edema MO (2017) Effect of preprocessing techniques on pearl millet flour and changes in technological properties. Int J Food Sci Technol 52:992–999

    Article  CAS  Google Scholar 

  • Amadou I, Gounga ME, Shi YH, Le GW (2014) Fermentation and heat-moisture treatment induced changes on the physicochemical properties of foxtail millet (Setaria italica) flour. Food Bioprod Process 92:38–45

    Article  CAS  Google Scholar 

  • Amin K, Akhtar S, Ismail T (2018) Nutritional and organoleptic evaluation of functional bread prepared from raw and processed defatted mango kernel flour. J Food Process Pres 42:13570–13578

    Article  Google Scholar 

  • Ayo-Omogie HN, Jolayemi OS, Chinma CE (2021) Fermentation and blanching as adaptable strategies to improve nutritional and functional properties of unripe Cardaba banana flour. J Agric Food Res 6:100214

    CAS  Google Scholar 

  • Baenas N, Moreno DA, García-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. J Agric Food Chem 60:11409–11420

    Article  CAS  PubMed  Google Scholar 

  • Baenas N, Gómez-Jodar I, Moreno DA, García-Viguera C, Periago PM (2017) Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biol Technol 127:60–67

    Article  CAS  Google Scholar 

  • Bearson S, Bearson B, Foster JW (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–180

    Article  CAS  PubMed  Google Scholar 

  • Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A (2019) Sprouted grains: a comprehensive review. Nutrients 11:421–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergey DH, Harrison F, Breed R, Hammer F (1923) Bergey’s manual of determinative bacteriology, 1st edn. The Williams & Wilkins Co, New York, Baltimore

    Google Scholar 

  • Bergqvist SW, Sandberg AS, Carlsson NG, Andlid T (2005) Improved iron solubility in carrot juice fermented by homo-and hetero-fermentative lactic acid bacteria. Food Microbiol 22:53–61

    Article  CAS  Google Scholar 

  • Conzatti A, da Silva Fróes FCT, Perry IDS, de Souza CG (2015) Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutr Hosp 31:559–569

    Google Scholar 

  • Degrain A, Manhivi V, Remize F, Garcia C, Sivakumar D (2020) Effect of lactic acid fermentation on colour, phenolic compounds and antioxidant activity in African nightshade. Microorganisms 8:1324–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Fu TJ, Smith MA (2013) Microbial contamination in sprouts: how effective is seed disinfection treatment? J Food Sci 78:495–501

    Article  Google Scholar 

  • Doniec J, Florkiewicz A, Duliński R, Filipiak-Florkiewicz A (2022) Impact of hydrothermal treatments on nutritional value and mineral bioaccessibility of Brussels sprouts (Brassica oleracea var. gemmifera). Molecules 27:1861–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donkor ON, Stojanovska L, Ginn P, Ashton J, Vasiljevic T (2012) Germinated grains–sources of bioactive compounds. Food Chem 135:950–959

    Article  CAS  PubMed  Google Scholar 

  • Drosinos EH, Paramithiotis S (2007) Trends in lactic acid fermentation. In: Palino MV (ed) Food microbiology research trends, 1st edn. Nova Science Publishers, New York, pp 39–92

    Google Scholar 

  • Dubois K, Gillies KA, Hamitton JK, Robers PA, Smith F (1956) Colourimetric method for the determination of sugars, and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Erdozain MS, Allen KJ, Morley KA, Powell DA (2013) Failures in sprouts-related risk communication. Food Control 30:649–656

    Article  Google Scholar 

  • European Union (2013) Commission Implementing Regulation (EU) no 208/2013 of 11 March 2013 on traceability requirements for sprouts and seeds intended for the production of sprouts. Official website of the European Union, EUR Lex. OJ L 68, p. 16–18. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013R0208. Accessed 15 Dec 2022

  • Fahey JW, Stephenson KK (1999) Cancer chemoprotective effects of cruciferous vegetables. HortScience 34:1159–1163

    Article  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem 56:5–51

    Article  CAS  Google Scholar 

  • Haug W, Lantzsch HJ (1983) Sensitive method for the rapid determination of phytate in cereals and cereal products. J Sci Food Agr 34:1423–1426

    Article  CAS  Google Scholar 

  • Herrmann C, FitzGerald J, O’Shea R, Xia A, O’Kiely P, Murphy JD (2015) Ensiling of seaweed for a seaweed biofuel industry. Bioresour Technol 196:301–313

    Article  CAS  PubMed  Google Scholar 

  • Hunaefi D, Gruda N, Riedel H, Akumo DN, Saw NMMT, Smetanska I (2013) Improvement of antioxidant activities in red cabbage sprouts by lactic acid bacterial fermentation. Food Biotechnol 27:279–302

    Article  CAS  Google Scholar 

  • Jeyakumar E, Lawrence R (2022) Microbial fermentation for reduction of antinutritional factors. In: Rai AK, Singh SP, Pandey A (eds) Current developments in biotechnology and bioengineering, 1st edn. Elsevier, Amsterdam, pp 239–260

    Chapter  Google Scholar 

  • Johanningsmeier S, McFeetersRF FHP, Thompson RL (2007) Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. J Food Sci 72:M166–M172

    Article  CAS  PubMed  Google Scholar 

  • Katina K, Liukkonen KH, Kaukovirta-Norja A, Adlercreutz H, Heinonen SM, Lampi AM, Pihlava JM, Poutanen K (2007) Fermentation-induced changes in the nutritional value of native or germinated rye. J Cereal Sci 46:348–355

    Article  CAS  Google Scholar 

  • Khattak AB, Zeb A, Bibi N (2008) Impact of germination time and type of illumination on carotenoid content, protein solubility and in vitro protein digestibility of chickpea (Cicer arietinum L.) sprouts. Food Chem 109:797–801

    Article  CAS  PubMed  Google Scholar 

  • Kiczorowski P, Kiczorowska B, Samolińska W, Szmigielski M, Winiarska-Mieczan A (2022) Effect of fermentation of chosen vegetables on the nutrient, mineral, and biocomponent profile in human and animal nutrition. Sci Rep 12:1–13

    Article  Google Scholar 

  • Latimer Jr GW (2019) Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st ed., Gaithersburg (MD), USA

  • Lazarte CE, Carlsson NG, Almgren A, Sandberg AS, Granfeldt Y (2015) Phytate, zinc, iron and calcium content of common Bolivian food, and implications for mineral bioavailability. J Food Compost Anal 39:111–119

    Article  CAS  Google Scholar 

  • Le TN, Luong HQ, Li HP, Chiu CH, Hsieh PC (2019) Broccoli (Brassica oleracea L. var. italica) sprouts as the potential food source for bioactive properties: a comprehensive study on in vitro disease models. Foods 8:532–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TN, Chiu CH, Hsieh PC (2020) Bioactive compounds and bioactivities of Brassica oleracea L. var. italica sprouts and microgreens: an updated overview from a nutraceutical perspective. Plants 9(8):946–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Hullar MA, Schwarz Y, Lampe JW (2009) Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit-and vegetable-free diet. J Nut 139:1685–1691

    Article  CAS  Google Scholar 

  • Li Y, Ten MMZ, Zwe YH, Li D (2022) Lactiplantibacillus plantarum 299v as starter culture suppresses Enterobacteriaceae more efficiently than spontaneous fermentation of carrots. Food Microbiol 103:103952

    Article  CAS  PubMed  Google Scholar 

  • Liu XL, Tai-hu MU, Hong-nan S, Miao Z, Jing-wang C (2016) Influence of potato flour on dough rheological properties and quality of steamed bread. J Integr Agric 15:2666–2676

    Article  Google Scholar 

  • Liu T, Hou GG, Cardin M, Marquart L, Dubat A (2017) Quality attributes of whole-wheat flour tortillas with sprouted whole-wheat flour substitution. LWT - Food Sci Technol 77:1–7

    Article  Google Scholar 

  • Lorn D, Ho PH, Tan R, Licandro H, Waché Y (2021) Screening of lactic acid bacteria for their potential use as aromatic starters in fermented vegetables. Int J Food Microbiol 350:109242–109251

    Article  CAS  PubMed  Google Scholar 

  • Luksiene Z, Paskeviciute E (2011) Microbial control of food-related surfaces: Na-chlorophyllin-based photosensitization. J Photochem Photobiol B Biol 105:69–74

    Article  CAS  Google Scholar 

  • Luo YW, Xie WH, Jin XX, Wang Q, He YJ (2014) Effects of germination on iron, zinc, calcium, manganese, and copper availability from cereals and legumes. CyTA J Food 12:22–26

    Article  CAS  Google Scholar 

  • Manzoor M, Singh D, Aseri GK, Sohal JS, Vij S, Sharma D (2021) Role of lacto-fermentation in reduction of antinutrients in plant-based foods. J Appl Biol Biotechnol 9(3):7–6

    CAS  Google Scholar 

  • Nagata N, Xu L, Kohno S, Ushida Y, Aoki Y, Umeda R, Fuke N, Zhuge F, Ni Y, Nagashimada M et al (2017) Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes 66:1222–1236

    Article  CAS  PubMed  Google Scholar 

  • Nkhata SG, Ayua E, Kamau EH, Shingiro JB (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6:2446–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogrodowczyk AM, Drabińska N (2021) Crossroad of tradition and innovation–the application of lactic acid fermentation to increase the nutritional and health-promoting potential of plant-based food products–a review. Polish J Food Nutr Sci 71:107–134

    CAS  Google Scholar 

  • Paramithiotis S, Hondrodimou OL, Drosinos EH (2010) Development of the microbial community during spontaneous cauliflower fermentation. Food Res Int 43:1098–1103

    Article  CAS  Google Scholar 

  • Paramithiotis S, Doulgeraki AI, Karahasani A, Drosinos EH (2014) Microbial population dynamics during spontaneous fermentation of Asparagus officinalis L. young sprouts. Eur Food Res Technol 239:297–304

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas H (2000) Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ Pollut 110:277–283

    Article  CAS  PubMed  Google Scholar 

  • Russo P, Arena MP, Fiocco D, Capozzi V, Drider D, Spano G (2017) Lactobacillus plantarum with broad antifungal activity: a promising approach to increase safety and shelf-life of cereal-based products. Int J Food Microbiol 247:48–54

    Article  CAS  PubMed  Google Scholar 

  • Šalić A, Šamec D (2022) Changes in the content of glucosinolates, polyphenols and carotenoids during lactic-acid fermentation of cruciferous vegetables: a mini review. Food Chem: X 16:100457–100462

    PubMed  Google Scholar 

  • Šamec D, Pavlović I, Redovniković IR, Salopek-Sondi B (2018) Comparative analysis of phytochemicals and activity of endogenous enzymes associated with their stability, bioavailability and food quality in five Brassicaceae sprouts. Food Chem 269:96–102

    Article  PubMed  Google Scholar 

  • Samtiya M, Aluko RE, Puniya AK, Dhewa T (2021) Enhancing micronutrients bioavailability through fermentation of plant-based foods: a concise review. Fermentation 7:63–75

    Article  CAS  Google Scholar 

  • Sangija F, Martin H, Matemu A (2022) Effect of lactic acid fermentation on the nutritional quality and consumer acceptability of African nightshade. Food Sci Nutr 10:3128–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao X, Xu B, Chen C, Li P, Luo H (2022) The function and mechanism of lactic acid bacteria in the reduction of toxic substances in food: a review. Crit Rev Food Sci 62:5950–5963

    Article  CAS  Google Scholar 

  • Shohag MJI, Wei Y, Yang X (2012) Changes of folate and other potential health-promoting phytochemicals in legume seeds as affected by germination. J Agri Food Chem 60:9137–9143

    Article  CAS  Google Scholar 

  • Siragusa S, De Angelis M, Calasso M, Campanella D, Minervini F, Di Cagno R, Gobbetti M (2014) Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. J Proteome Res 96:366–380

    Article  CAS  Google Scholar 

  • Vale AP, Santos J, Brito NV, Fernandes D, Rosa E, Oliveira MBP (2015a) Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts. Phytochem 115:252–260

    Article  CAS  Google Scholar 

  • Vale AP, Santos J, Brito NV, Peixoto V, Carvalho R, Rosa E, Oliveira MBP (2015b) Light influence in the nutritional composition of Brassica oleracea sprouts. Food Chem 178:292–300

    Article  CAS  PubMed  Google Scholar 

  • Wojdyło A, Nowicka P, Tkacz K, Turkiewicz IP (2020) Sprouts vs. microgreens as novel functional foods: variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules 25:4648–4666

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong T, Guan Q, Song S, Hao M, Xie M (2012) Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. Food Control 26:178–181

    Article  CAS  Google Scholar 

  • Xu Y, Zhao Z, Tong W, Ding Y, Liu B, Shi Y, Wang J, Sun S, Liu M, Wang Y, Qi Q, Xia M, Zhao G (2020) An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat Commun 11:1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by High Education Commission (HEC), Pakistan under the project Indigenous Ph.D. Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

AL performed the research activities and wrote the manuscript, QAS supervised the research, checked the manuscript and submitted article for publication, TH and MS are members of research supervisory committee who assisted AL in refining the research idea and approved the study plan.

Corresponding author

Correspondence to Qamar Abbas Syed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

Informed consent was obtained from all authors to publish this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Layla, A., Syed, Q.A., Zahoor, T. et al. Investigating the role of Lactiplantibacillus plantarum vs. spontaneous fermentation in improving nutritional and consumer safety of the fermented white cabbage sprouts. Int Microbiol 27, 753–764 (2024). https://doi.org/10.1007/s10123-023-00426-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-023-00426-1

Keywords

Navigation