Skip to main content

Advertisement

Log in

The inhibitory effects of live and UV-killed Akkermansia muciniphila and its derivatives on cytotoxicity and inflammatory response induced by Clostridioides difficile RT001 in vitro

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Clostridioides difficile infection (CDI) is the leading cause of healthcare-acquired infections worldwide. Probiotics are widely recommended to prevent CDI and its recurrences. Akkermansia muciniphila, as a therapeutic symbiont colonizing the intestinal mucosal layer, is considered to be a promising next-generation probiotic. In this work, we assessed the inhibitory effects of A. muciniphila MucT and its derivatives on cytotoxicity and inflammatory response induced by C. difficile RT001 in Caco-2 cells. The results obtained from SEM revealed that the morphology of UV-killed A. muciniphila remained unchanged after UV inactivation. TEM analysis showed that A. muciniphila–isolated extracellular vesicles (EVs) were spherical and ranged from 50 to 200 nm in size. Toxigenic supernatant (Tox-S) of C. difficile RT001 (500 μg/ml) significantly (P <0.01) reduced the cell viability of Caco-2 cells. Caco-2 cells treated with live (MOI 10), UV-killed (MOI 10), cell-free supernatant (CFS, 106 cfu/ml), and EVs (20 μg/ml) of A. muciniphila exhibited over 90% viability in comparison to untreated control. The neutralized CFS preparation using A. muciniphila and its derivatives could notably reduce the expression level of inflammatory markers. Additionally, A. muciniphila and its derivatives modulated the production of IL-1β, TNF-α, and IL-10 in Tox-S stimulated Caco-2 cells. We demonstrated that A. muciniphila and its derivatives can modulate changes in the gut barrier–related genes and inflammatory response caused by C. difficile Tox-S in Caco-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data which was generated in this study is included in the manuscript and can be provided by the authors upon request.

References

  • Abuqwider JN, Mauriello G, Altamimi M (2021) Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review. Microorganisms 9:1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberro A, Iparraguirre L, Fernandes A, Otaegui D (2021) Extracellular vesicles in blood: sources, effects, and applications. Int J Mol Sci 22:8163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anhê FF, Pilon G, Roy D, Desjardins Y, Levy E, Marette A (2016) Triggering Akkermansia with dietary polyphenols: a new weapon to combat the metabolic syndrome? Gut Microbes 7:146–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Anhê FF, Schertzer JD, Marette A (2019) Bacteria to alleviate metabolic syndrome. Nat Med 25:1031–1033

    Article  PubMed  Google Scholar 

  • Ashrafian F, Behrouzi A, Shahriary A, Ahmadi Badi S, Davari M, Khatami S et al (2019a) Comparative study of effect of Akkermansia muciniphila and its extracellular vesicles on toll-like receptors and tight junction. Gastroenterol Hepatol Bed Bench 12:163–168

    PubMed  PubMed Central  Google Scholar 

  • Ashrafian F, Shahriary A, Behrouzi A, Moradi HR, Keshavarz Azizi Raftar S, Lari A et al (2019b) Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front Microbiol 10:2155

    Article  PubMed  PubMed Central  Google Scholar 

  • Bäuerl C, Coll-Marqués JM, Tarazona-González C, Pérez-Martínez G (2020) Lactobacillus casei extracellular vesicles stimulate EGFR pathway likely due to the presence of proteins P40 and P75 bound to their surface. Sci Rep 10:19237

    Article  PubMed  PubMed Central  Google Scholar 

  • Becken B, Davey L, Middleton DR, Mueller KD, Sharma A, Holmes ZC et al (2021) genotypic and phenotypic diversity among human isolates of Akkermansia muciniphila. mBio 12:e00478–e00421

    Article  PubMed  PubMed Central  Google Scholar 

  • Cani PD, de Vos WM (2017) Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 8:1765

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang CJ, Lin TL, Tsai YL, Wu TR, Lai WF, Lu CC, Lai HC (2019) Next generation probiotics in disease amelioration. J Food Drug Anal 27:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y et al (2018) Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Me 50:e450

    Article  CAS  Google Scholar 

  • Chronopoulos A, Kalluri R (2020) Emerging role of bacterial extracellular vesicles in cancer. Oncogene 39:6951–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor MC, McGrath JW, McMullan G, Marks N, Guelbenzu M, Fairley DJ (2019) Emergence of a non-sporulating secondary phenotype in Clostridium (Clostridioides) difficile ribotype 078 isolated from humans and animals. Sci Rep 9:13722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R (2021) Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol 12:178

    Article  Google Scholar 

  • Darkoh C, Plants-Paris K, Bishoff D, DuPont HL (2019) Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule. mSystems 4. https://doi.org/10.1128/msystems.00346-18

  • Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM (2008) The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74:1646–1648

    Article  CAS  PubMed  Google Scholar 

  • Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Dieterle MG, Rao K, Young VB (2019) Novel therapies and preventative strategies for primary and recurrent Clostridium difficile infections. Ann N Y Acad Sci 1435:110–138

    Article  PubMed  Google Scholar 

  • EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S et al (2021) Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 19:e06780

    Google Scholar 

  • El-Obeid A, Yahya WB, Almuzzaini B, Tuwaijri AA, Najdi M, Hassib A et al (2021) Herbal melanin induces interleukin-1β secretion and production by human THP-1 monocytes via Toll-like receptor 2 and p38 MAPK activation. Exp Ther Med 22:1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fábrega MJ, Rodríguez-Nogales A, Garrido-Mesa J, Algieri F, Badía J, Giménez R et al (2017) Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. Front Microbiol 8:1274

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn E, Andersson FL, Madin-Warburton M (2021) Burden of Clostridioides difficile infection (CDI) - a systematic review of the epidemiology of primary and recurrent CDI. BMC Infect Dis 21:456

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldenberg JZ, Yap C, Lytvyn L, Lo CKF, Beardsley J, Mertz D, Johnston BC (2017) Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev 12:CD006095

    PubMed  Google Scholar 

  • González-Domínguez É, Domínguez-Soto Á, Nieto C, Flores-Sevilla JL, Pacheco-Blanco M, Campos-Peña V et al (2016) Atypical activin A and IL-10 production impairs human CD16+ monocyte differentiation into anti-inflammatory macrophages. J Immunol 196:1327–37

    Article  PubMed  Google Scholar 

  • Hagi T, Belzer C (2021) The interaction of Akkermansia muciniphila with host-derived substances, bacteria and diets. Appl Microbiol Biotechnol 105:4833–4841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan AU, Rahman A, Kobori H (2019) Interactions between host PPARs and gut microbiota in health and disease. Int J Mol Sci 20:387

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  PubMed  Google Scholar 

  • Hiranuma H, Gon Y, Maruoka S, Kozu Y, Yamada S, Fukuda A et al (2020) DsRNA induction of microRNA-155 disrupt tight junction barrier by modulating claudins. Asia Pac Allergy 10:e20

    Article  PubMed  PubMed Central  Google Scholar 

  • Igarashi N, Honjo M, Kaburaki T, Aihara M (2020) Effects of ROCK inhibitors on apoptosis of corneal endothelial cells in CMV-positive Posner-Schlossman syndrome patients. Invest Ophthalmol Vis Sci 61:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan AT (2017) Outer membrane vesicles (OMVs) of Gram-negative bacteria: a perspective update. Front Microbiol 8:1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly CR, Fischer M, Allegretti JR, LaPlante K, Stewart DB, Limketkai BN, Stollman NH (2021) ACG Clinical Guidelines: prevention, diagnosis, and treatment of Clostridioides difficile infections. Am J Gastroenterol 116:1124–1147

    Article  CAS  PubMed  Google Scholar 

  • Keshavarz Azizi Raftar S, Abdollahiyan S, Azimirad M, Yadegar A, Vaziri F, Moshiri A et al (2021a) The anti-fibrotic effects of heat-killed Akkermansia muciniphila MucT on liver fibrosis markers and activation of hepatic stellate cells. Probiotics Antimicrob Proteins 13:776–787

    Article  CAS  PubMed  Google Scholar 

  • Keshavarz Azizi Raftar S, Ashrafian F, Yadegar A, Lari A, Moradi HR, Shahriary A et al (2021b) The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury. Microbiol Spectr 9. https://doi.org/10.1128/spectrum.00484-21

  • Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA (2021) Multi-strain probiotics: synergy among isolates enhances biological activities. Biology 10:322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmi SP, Reddy AT, Reddy RC (2017) Transforming growth factor β suppresses peroxisome proliferator-activated receptor γ expression via both SMAD binding and novel TGF-β inhibitory elements. Biochem J 474:1531–1546

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lin S, Vanhoutte PM, Woo CW, Xu A (2016) Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- mice. Circulation 133:2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Mills JP, Rao K, Young VB (2018) Probiotics for prevention of Clostridium difficile infection. Curr Opin Gastroenterol 34:3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina-Tijeras JA, Gálvez J, Rodríguez-Cabezas ME (2019) The immunomodulatory properties of extracellular vesicles derived from probiotics: a novel approach for the management of gastrointestinal diseases. Nutrients 11:1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moosavi SM, Akhavan Sepahi A, Mousavi SF, Vaziri F, Siadat SD (2020) The effect of Faecalibacterium prausnitzii and its extracellular vesicles on the permeability of intestinal epithelial cells and expression of PPARs and ANGPTL4 in the Caco-2 cell culture model. J Diabetes Metab Disord 19:1061–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naito Y, Uchiyama K, Takagi T (2018) A next-generation beneficial microbe: Akkermansia muciniphila. J Clin Biochem Nutr 63:33–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nataraj BH, Ali SA, Behare PV, Yadav H (2020) Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact 19:168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ofinran O, Bose U, Hay D, Abdul S, Tufatelli C, Khan R (2016) Selection of suitable reference genes for gene expression studies in normal human ovarian tissues, borderline ovarian tumours and ovarian cancer. Mol Med Rep 14:5725–5731

    Article  CAS  PubMed  Google Scholar 

  • Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V, Klievink J et al (2017) Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PloS One 12:e0173004

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellissery AJ, Vinayamohan PG, Kuttappan DA, Mishra N, Fragomeni BO, Maas K et al (2021) Protective effect of Baicalin against Clostridioides difficile infection in mice. Antibiotics 10:926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L et al (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113

    Article  CAS  PubMed  Google Scholar 

  • Rikkert LG, Nieuwland R, Terstappen LWMM, Coumans FAW (2019) Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. J Extracell Vesicles 8:1555419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roshan N, Riley TV, Knight DR, Hammer KA (2018) Effect of natural products on the production and activity of Clostridium difficile toxins in vitro. Sci Rep 8:15735

    Article  PubMed  PubMed Central  Google Scholar 

  • Samarkos M, Mastrogianni E, Kampouropoulou O (2018) The role of gut microbiota in Clostridium difficile infection. Eur J Intern Med 50:28–32

    Article  PubMed  Google Scholar 

  • Shin J, Noh JR, Chang DH, Kim YH, Kim MH, Lee ES et al (2019) Elucidation of Akkermansia muciniphila probiotic traits driven by mucin depletion. Front Microbiol 10:1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Stavropoulou E, Bezirtzoglou E (2020) Probiotics in medicine: a long debate. Front Immunol 11:2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usuda H, Okamoto T, Wada K (2021) Leaky gut: effect of dietary fiber and fats on microbiome and intestinal barrier. Int J Mol Sci 22:7613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdés-Varela L, Alonso-Guervos M, García-Suárez O, Gueimonde M, Ruas-Madiedo P (2016a) Screening of Bifidobacteria and Lactobacilli able to antagonize the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer. Front Microbiol 7:577

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdés-Varela L, Hernández-Barranco AM, Ruas-Madiedo P, Gueimonde M (2016b) Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front Microbiol 7:738

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargoorani ME, Modarressi MH, Vaziri F, Motevaseli E, Siadat SD (2020) Stimulatory effects of Lactobacillus casei derived extracellular vesicles on toll-like receptor 9 gene expression and cytokine profile in human intestinal epithelial cells. J Diabetes Metab Disord 19:223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Liu K, Seneviratne CJ, Li X, Cheung GS, Jin L et al (2015) Lipoteichoic acid from an Enterococcus faecalis clinical strain promotes TNF-α expression through the NF-κB and p38 MAPK signaling pathways in differentiated THP-1 macrophages. Biomed Rep 3:697–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Yang F, Wu Q, Gao J, Liu W, Liu C et al (2018) Protective effects of Bifidobacterial strains against toxigenic Clostridium difficile. Front Microbiol 9:888

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner A, Mölling P, Fagerström A, Dyrkell F, Arnellos D, Johansson K et al (2020) Whole genome sequencing of Clostridioides difficile PCR ribotype 046 suggests transmission between pigs and humans. PloS One 15:e0244227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wongkuna S, Janvilisri T, Phanchana M, Harnvoravongchai P, Aroonnual A, Aimjongjun S et al (2021) Temporal variations in patterns of Clostridioides difficile strain diversity and antibiotic resistance in Thailand. Antibiotics 10:714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Bose S, Lim S, Seo J, Shin J, Lee D et al (2020) Beneficial effects of newly isolated Akkermansia muciniphila strains from the human gut on obesity and metabolic dysregulation. Microorganisms 8:1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao P, Tan F, Gao H, Wang L, Yang T, Cheng Y (2017) Effects of probiotics on Toll-like receptor expression in ulcerative colitis rats induced by 2,4,6-trinitro-benzene sulfonic acid. Mol Med Rep 15:1973–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YJ, Wang XH, Fan GC (2018) Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacol Sin 39:514–533

    Article  CAS  PubMed  Google Scholar 

  • Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG (2020) Probiotic: conceptualization from a new approach. Curr Opin Food Sci 32:103–123

    Article  Google Scholar 

  • Zhang T, Li Q, Cheng L, Buch H, Zhang F (2019) Akkermansia muciniphila is a promising probiotic. J Microbial Biotechnol 12:1109–1125

    Article  Google Scholar 

  • Zhu D, Sorg JA, Sun X (2018) Clostridioides difficile biology: sporulation, germination, and corresponding therapies for C. difficile Infection. Front Cell Infect Microbiol 8:29

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all members of the Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran, and Microbiology Research, and also the Department of Microbiology at the School of Medicine, Shahid Beheshti University of Medical Sciences. This article has been also extracted from a PhD thesis (Registration No: 568) by Mrs. Gelareh Nasiri from Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Funding

This study was supported by a grant from School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Grant No: 21635, IR.SBMU.RIGLD.REC.1399.110). Also, the study was funded by a research grant (Grant No: RIGLD 1140) from Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

GN performed the microbiological experiments, cell culture, molecular tests, ELISA, and data analysis, and wrote the manuscript draft; MA contributed to the microbiological experiments and cell culture experiments; SA participated in molecular testing and cell culture experiments; AY contributed to study design, methodology, conceptualization, and project administration; AY and ZG contributed to the project supervision and administration; AY, ZG, SS, HG, HAA, and MRZ critically revised the manuscript. All authors approved the final version of the manuscript and the authorship list.

Corresponding authors

Correspondence to Abbas Yadegar or Zohreh Ghalavand.

Ethics declarations

Ethics approval

This work does not contain any studies related with human participants or animals. The study was approved by the Institutional Ethical Review Committee of Research Institute for Gastroenterology and Liver Diseases at Shahid Beheshti University of Medical Sciences (Project No. IR.SBMU.RIGLD.REC.1399.053).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 362 kb)

ESM 2

(DOCX 319 kb)

ESM 3

(DOCX 1.18 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, G., Azimirad, M., Goudarzi, H. et al. The inhibitory effects of live and UV-killed Akkermansia muciniphila and its derivatives on cytotoxicity and inflammatory response induced by Clostridioides difficile RT001 in vitro. Int Microbiol 27, 393–409 (2024). https://doi.org/10.1007/s10123-023-00398-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-023-00398-2

Keywords

Navigation