Belotserkovsky I, Sansonetti PJ (2018) Shigella and enteroinvasive Escherichia coli. Curr Top Microbiol Immunol 416:1–26. https://doi.org/10.1007/82_2018_104
CAS
Article
PubMed
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database issue):D233-238. https://doi.org/10.1093/nar/gkn663
CAS
Article
PubMed
Google Scholar
Chiba H, Osanai M, Murata M, Kojima T, Sawada N (2008) Transmembrane Proteins of Tight Junctions. Bba-Biomembranes 1778(3):588–600. https://doi.org/10.1016/j.bbamem.2007.08.017
CAS
Article
PubMed
Google Scholar
Denizot J, Sivignon A, Barreau F, Darcha C, Chan HF, Stanners CP et al (2012) Adherent-invasive Escherichia coli induce claudin-2 expression and barrier defect in CEABAC10 mice and Crohn’s disease patients. Inflamm Bowel Dis 18(2):294–304
Article
Google Scholar
Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13(9):601–612. https://doi.org/10.1038/nrg3226
CAS
Article
PubMed
PubMed Central
Google Scholar
Fleece ME, Pholwat S, Mathers AJ, Houpt ER (2018) Molecular diagnosis of antimicrobial resistance in Escherichia coli. Expert Rev Mol Diagn 18(3):207–217. https://doi.org/10.1080/14737159.2018.1439381
CAS
Article
PubMed
Google Scholar
Heller F, Florian P, Bojarski C et al (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129(2):550–564. https://doi.org/10.1016/j.gastro.2005.05.002
CAS
Article
PubMed
Google Scholar
Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, Yi H, Yang Z, Yin Y (2018) dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res 46(D1):D516–D521. https://doi.org/10.1093/nar/gkx894
CAS
Article
PubMed
Google Scholar
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119
CAS
Article
PubMed
PubMed Central
Google Scholar
Iqbal J, Malviya N, Gaddy JA, Zhang C, Seier AJ, Haley KP, Doster RS, Farfán-García AE, Gómez-Duarte OG (2022) Enteroinvasive Escherichia coli O96:H19 is an emergent biofilm-forming pathogen. J Bacteriol 04(4):e0056221. https://doi.org/10.1128/jb.00562-21
CAS
Article
Google Scholar
Krug SM, Schulzke JD, Fromm M (2014) Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 36:166–176. https://doi.org/10.1016/j.semcdb.2014.09.002
CAS
Article
PubMed
Google Scholar
Liu B, Pop M (2009) ARDB-Antibiotic Resistance Genes Database. Nucleic Acids Res 37(Database issue):D443–D447. https://doi.org/10.1093/nar/gkn656
CAS
Article
PubMed
Google Scholar
Liu J, Yan Q, Luo F, Shang D et al (2015) Acute cholecystitis associated with infection of Enterobacteriaceae from gut microbiota. Clin Microbiol Infec 21(9):851.e1-e9. https://doi.org/10.1016/j.cmi.2015.05.017
CAS
Article
Google Scholar
Luettiga J, Rosenthala R, Barmeyera C, Schulzke JD (2015) Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers 3(1–2):e977176. https://doi.org/10.4161/21688370.2014.977176
CAS
Article
Google Scholar
Markov AG, Voronkova MA, Volgin GN, Yablonsky PK, Fromm M, Amasheh S (2011) Tight junction proteins contribute to barrier properties in human pleura. Resp Physiol Neurobi 175(3):331–335. https://doi.org/10.1016/j.resp.2010.12.012
CAS
Article
Google Scholar
Nguyen F, Starosta AL, Arenz S, Sohmen D, Donhofer A, Wilson DN (2014) Tetracycline antibiotics and resistance mechanisms. Biol Chem 395(5):559–575. https://doi.org/10.1515/hsz-2013-0292
CAS
Article
PubMed
Google Scholar
Park M, Rooney AP, Hecht DW, Li J, McClane BA, Nayak R, Paine DD, Rafii F (2010) Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. Arch Microbiol 192(10):803–810. https://doi.org/10.1007/s00203-010-0605-5
CAS
Article
PubMed
Google Scholar
Pawlowska B, Sobieszczanska BM (2017) Intestinal epithelial barrier: the target for pathogenic Escherichia coli. Adv Clin Exp Med 26(9):1437–1445. https://doi.org/10.17219/acem/64883
Article
PubMed
Google Scholar
Ren X, Zhu Y, Gamallat Y, Ma S, Chiwala G, Meyiah A, Xin Y (2017) E. coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine. Biomed Pharmacother 94:468–473. https://doi.org/10.1016/j.biopha.2017.07.123
CAS
Article
PubMed
Google Scholar
Rolain JM, Raoult D (2005) Genome comparison analysis of molecular mechanisms of resistance to antibiotics in the Rickettsia genus. Ann N Y Acad Sci 1063:222–230. https://doi.org/10.1196/annals.1355.035
CAS
Article
PubMed
Google Scholar
Schumann M, Gunzel D, Buergel N et al (2012a) Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut 61(2):220–228. https://doi.org/10.1136/gutjnl-2011-300123
CAS
Article
PubMed
Google Scholar
Schumann M, Kamel S, Pahlitzsch ML et al (2012b) Defective tight junctions in refractory celiac disease. Ann N Y Acad Sci 1258:43–51. https://doi.org/10.1111/j.1749-6632.2012.06565.x
CAS
Article
PubMed
Google Scholar
Sereny B (1963) Biochemical reactions and virulence of E. Coli O124: K72 (17). Acta Microbiol Acad Sci Hung 10:11–18
CAS
PubMed
Google Scholar
Shawki A, McCole DF (2017) Mechanisms of intestinal epithelial barrier dysfunction by adherent-invasive Escherichia coli. Cell Mol Gastroenter 3(1):41–50. https://doi.org/10.1016/j.jcmgh.2016.10.004
Article
Google Scholar
Sloan J, McMurry LM, Lyras D, Levy SB, Rood J (1994) The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA (P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol Microbiol 11(2):403–415. https://doi.org/10.1111/j.1365-2958.1994.tb00320.x
CAS
Article
PubMed
Google Scholar
Su Y, Wu SD, Fan Y, Jin JZ, Zhang ZH (2009) The preliminary experimental and clinical study of the relationship between the pigment gallstone and intestinal mucosal barrier. J Gastroen Hepatol 24(8):1451–1456. https://doi.org/10.1111/j.1440-1746.2009.05842.x
CAS
Article
Google Scholar
Tsai PY, Zhang BK, He WQ et al (2017) IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance. Cell Host Microbe 21(6):671-681.e4. https://doi.org/10.1016/j.chom.2017.05.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang AJ, Wang TE, Lin CC, Lin SC, Shih SC (2003) Clinical predictors of severe gallbladder complications in acute acalculous cholecystitis. World J Gastroentero 9(12):2821–2823. https://doi.org/10.3748/wjg.v9.i12.2821
Article
Google Scholar
Wang YC, Jin QM, Kong WZ, Chen J (2015) Protective effect of salvianolic acid B on NASH rat liver through restoring intestinal mucosal barrier function. Int J Clin Exp Patho 8(5):5203–5209
Google Scholar
Yang PS, Liu CP, Hsu YC, Chen CF, Lee CC, Cheng SP (2019) A novel prediction model for bloodstream infections in hepatobiliary-pancreatic surgery patients. World J Surg 43(5):1294–1302. https://doi.org/10.1007/s00268-018-04903-x
Article
PubMed
Google Scholar
Yousefi B, Ghaderi S, Rezapoor-Lactooyi A, Amiri N, Verdi J, Shoae-Hassani A (2012) Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces. Ann Clin Microb Anti 11:21. https://doi.org/10.1186/1476-0711-11-21
CAS
Article
Google Scholar
Zeissig S, Burgel N, Gunzel D, Richter J et al (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56(1):61–72. https://doi.org/10.1136/gut.2006.094375
CAS
Article
PubMed
Google Scholar
Zhang QM, Gao F, Peng H et al (2009) Crystal structures of Streptococcus suis mannonate dehydratase (ManD) and its complex with substrate: genetic and biochemical evidence for a catalytic mechanism. J Bacteriol 191(18):5832–5837. https://doi.org/10.1128/JB.00599-09
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang YG, Wu SP, Xia YL, Sun J (2013) Salmonella infection upregulates the leaky protein claudin-2 in intestinal epithelial cells. PLoS One 8(3):e58606. https://doi.org/10.1371/journal.pone.0058606
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang YY, Ding DD, Liu ML et al (2016) Effect of the glycosyltransferases on the capsular polysaccharide synthesis of Streptococcus suis serotype 2. Microbiol Res 185:45–54. https://doi.org/10.1016/j.micres.2016.02.002
CAS
Article
PubMed
Google Scholar