Akob DM, Bohu T, Beyer A, Schäffner F, Händel M, Johnson CA, Merten D, Büchel G, Totsche KU, Küsel K, Lovell CR (2014) Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine. Appl Environ Microb 80:5086–5097. https://doi.org/10.1128/AEM.01296-14
CAS
Article
Google Scholar
Andeer PF, Learman DR, McIlvin M, Dunn JA, Hansel CM (2015) Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production. Environ Microbiol 17:3925–3936. https://doi.org/10.1111/1462-2920.12893
CAS
Article
PubMed
Google Scholar
Barboza NR, Amorim SS, Santos PA, Reis FD, Cordeiro MM, Guerra-Sá R, Leão VA, Fan X (2015) Indirect manganese removal by Stenotrophomonas sp. and Lysinibacillus sp. isolated from Brazilian mine water. Biomed Res Int 925972. https://doi.org/10.1155/2015/925972
Bargar JR, Tebo BM, Villinski JE (2000) In situ characterization of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1. Geochim Cosmochim Ac 64:2775–2778. https://doi.org/10.1016/S0016-7037(00)00368-9
CAS
Article
Google Scholar
Bargar JR, Tebo BM, Bergmann U, Webb SM, Glatzel P, Chiu VQ, Villalobos M (2005) Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1. Am Mineral 90:143–154. https://doi.org/10.2138/am.2005.1557
CAS
Article
Google Scholar
Cömert S, Tepe O (2020) Production and characterization of biogenic manganese oxides by manganese-adapted Pseudomonas putida NRRL B-14878. Geomicrobiol J 37:753–763. https://doi.org/10.1080/01490451.2020.1770900
CAS
Article
Google Scholar
Dhami NK, Reddy MS, Mukherjee A (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl Biochem Biotech 172:2552–2561. https://doi.org/10.1007/s12010-013-0694-0
CAS
Article
Google Scholar
Forrez I, Carballa M, Verbeken K, Vanhaecke L, Michael S, Ternes T, Boon N, Verstraete W (2010) Diclofenac oxidation by biogenic manganese oxides. Environ Sci Technol 44:3449–3454. https://doi.org/10.1021/es9027327
CAS
Article
PubMed
Google Scholar
Francis CA, Tebo BM (2002) Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microb 68:874–880. https://doi.org/10.1128/AEM.68.2.874-880.2002
CAS
Article
Google Scholar
Furuta S, Ikegaya H, Hashimoto H, Ichise S, Kohno T, Miyata N, Takada J (2015) Formation of filamentous Mn oxide particles by the Alphaproteobacterium Bosea sp. Strain BIWAKO-01. Geomicrobiol J 32:666–676.https://doi.org/10.1080/01490451.2014.982837
Gao B, Zhu S, Gu J, Liu Y, Yi X, Zhou H (2022) Superoxide radical mediated Mn (III) formation is the key process in the activation of peroxymonosulfate (PMS) by Mn-incorporated bacterial-derived biochar. J Hazard Mater 431:128549. https://doi.org/10.1016/j.jhazmat.2022.128549
CAS
Article
PubMed
Google Scholar
Hansel CM, Zeiner CA, Santelli CM, Webb SM (2012) Mn (II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc Natl Acad Sci USA 109:12621–12625. https://doi.org/10.1073/pnas.1203885109
Article
PubMed
PubMed Central
Google Scholar
Katsoyiannis IA, Zouboulis AI (2004) Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization. Water Res 38:1922–1932. https://doi.org/10.1016/j.watres.2004.01.014
CAS
Article
PubMed
Google Scholar
Klueglein N, Zeitvogel F, Stierhof YD, Floetenmeyer M, Konhauser KO, Kappler A, Obst M (2014) Potential role of nitrite for abiotic Fe (II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl Environ Microbiol 80:1051–1061. https://doi.org/10.1128/AEM.03277-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Liang J, Bai Y, Hu C, Qu J (2016) Cooperative Mn(II) oxidation between two bacterial strains in an aquatic environment. Water Res 89:252–260. https://doi.org/10.1016/j.watres.2015.11.062
CAS
Article
PubMed
Google Scholar
Liang DH, Hu Y, Cheng J, Chen Y (2021) Enhanced performance of sulfamethoxazole degradation using Achromobacter sp. JL9 with in-situ generated biogenic manganese oxides. Bioresource Technol 333:125089. https://doi.org/10.1016/j.biortech.2021.125089
Liao S, Zhou J, Wang H, Chen X, Wang H, Wang G (2013) Arsenite oxidation using biogenic manganese oxides produced by a deep-sea manganese-oxidizing bacterium, Marinobacter sp. MnI7–9. Geomicrobiol J 30:150–159.https://doi.org/10.1080/01490451.2011.654379
Miletto M, Wang X, Planavsky NJ, Luther GW, Lyons TW, Tebo BM (2021) Marine microbial Mn(II) oxidation mediates Cr(III) oxidation and isotope fractionation. Geochim Cosmochim Ac 297:101–119. https://doi.org/10.1016/j.gca.2021.01.008
CAS
Article
Google Scholar
Naik-Samant S, Furtado I (2019) Formation of rhodochrosite by Haloferax alexandrinus GUSF-1. J Clust Sci 30:1435–1441. https://doi.org/10.1007/s10876-019-01586-9
CAS
Article
Google Scholar
Parikh SJ, Chorover J (2005) FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1. Geomicrobiol J 22:207–218. https://doi.org/10.1080/01490450590947724
CAS
Article
Google Scholar
Romano CA, Zhou M, Song Y, Wysocki VH, Dohnalkova AC, Kovarik L, Paša-Tolić L, Tebo BM (2017) Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx. Nat Commun 8:746. https://doi.org/10.1038/s41467-017-00896-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Tu J, Yang Z, Hu C, Qu J (2014) Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation. J Environ Sci-China 26:1154–1161. https://doi.org/10.1016/S1001-0742(13)60505-7
CAS
Article
PubMed
Google Scholar
Wang R, Wang S, Tai Y, Tao R, Dai Y, Guo J, Yang Y, Duan S (2017) Biogenic manganese oxides generated by green algae Desmodesmus sp. WR1 to improve bisphenol A removal. J Hazard Mater 339:310–319. https://doi.org/10.1016/j.jhazmat.2017.06.026
CAS
Article
PubMed
Google Scholar
Wang G, Liu Y, Wu M, Zong W, Yi X, Zhan J, Liu L, Zhou H (2019) Coupling the phenolic oxidation capacities of a bacterial consortium and in situ-generated manganese oxides in a moving bed biofilm reactor (MBBR). Water Res 166:115047. https://doi.org/10.1016/j.watres.2019.115047
CAS
Article
PubMed
Google Scholar
Wang Q, Wei H, Liu W, Zhai J (2021) Carbamazepine removal by the synergistic effect of manganese-oxidizing microalgae and biogenic manganese oxides. J Hazard Mater 419:126530. https://doi.org/10.1016/j.jhazmat.2021.126530
CAS
Article
PubMed
Google Scholar
Zhang S, Zhao L, Wu Y, Pang Y, Yue X, Li B, Li Q, Zhang J (2019a) Controllable synthesis of hierarchical nanoporous ε-MnO2 crystals for the highly effective oxidation removal of formaldehyde. Cryst Eng Comm 21:3863–3872. https://doi.org/10.1039/C9CE00466A
CAS
Article
Google Scholar
Zhang Y, Tang Y, Qin Z, Luo P, Ma Z, Tan M, Kang H, Huang Z (2019b) A novel manganese oxidizing bacterium-Aeromonas hydrophila strain DS02: Mn(II) oxidization and biogenic Mn oxides generation. J Hazard Mater 367:539–545. https://doi.org/10.1016/j.jhazmat.2019.01.012
CAS
Article
PubMed
Google Scholar
Zhao X, Wang X, Liu B, Xie G, Xing D (2018) Characterization of manganese oxidation by Brevibacillus at different ecological conditions. Chemosphere 205:553–558. https://doi.org/10.1016/j.chemosphere.2018.04.130
CAS
Article
PubMed
Google Scholar
Zhou H, Fu C (2020) Manganese-oxidizing microbes and biogenic manganese oxides: characterization, Mn(II) oxidation mechanism and environmental relevance. Rev Environ Sci Biotechnol 19:489–507. https://doi.org/10.1007/s11157-020-09541-1
CAS
Article
Google Scholar
Zhu S, Xiao P, Wang X, Liu Y, Yi X, Zhou H (2022) Efficient peroxymonosulfate (PMS) activation by visible-light-driven formation of polymorphic amorphous manganese oxides. J Hazard Mater 427:127938. https://doi.org/10.1016/j.jhazmat.2021.127938
CAS
Article
PubMed
Google Scholar