Skip to main content

Biofilm formation of Salmonella enterica serovar Enteritidis cocultured with Acanthamoeba castellanii responds to nutrient availability

Abstract

Acanthamoeba spp. and Salmonella share common habitats, and their interaction may influence the biofilm-forming ability of Salmonella. In this study, biofilm formation of Salmonella enterica serovar Enteritidis cocultured with Acanthamoeba castellanii was examined in nutrient-rich and nutrient-deficient media. Furthermore, transcript copy number of biofilm-related genes in the biofilm cells of S. Enteritidis in monoculture was compared to those in coculture with A. castellanii. Results demonstrated that the presence of A. castellanii in the culture media activates the genes involved in the biofilm formation of S. Enteritidis, regardless of the nutrient availability. However, biofilm formation of S. Enteritidis cocultured with A. castellanii was not consistent with the transcript copy number results. In nutrient-rich medium, the number of Salmonella biofilm cells and the contents of the three main components of the biofilms including eDNA, protein, and carbohydrates were higher in the presence of A. castellanii compared to monocultures. However, in nutrient-deficient medium, the number of biofilm cells, and the amount of biofilm components in coculture conditions were less than the monocultures. These results indicate that despite activation of relevant genes in both nutrient-rich and nutrient-deficient media, biofilm formation of S. Enteritidis cocultured with A. castellanii responds to nutrient availability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Ahimou F, Semmens MJ, Haugstad G, Novak PJ (2007) Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Appl Environ Microbiol 73(9):2905–2910

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Alsam S, Jeong SR, Sissons J, Dudely R, Kim KS, Khan NA (2006) Escherichia coli interaction with Acanthamoeba: a symbiosis with environmental and clinical implication. J Med Microbiol 55:689–694

    PubMed  Article  Google Scholar 

  • Böhme A, Risse-Buhl U, Kusel K (2009) Protists with different feeding modes change biofilm morphology. FEMS Microbiol Ecol 69:158–169

    PubMed  Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Article  Google Scholar 

  • Campioni F, Bergamini AMM, Falcão JP (2012) Genetic diversity, virulence genes and antimicrobial resistance of Salmonella Enteritidis isolated from food and humans over a 24-year period in Brazil. Food Microbiol 32(2):254–264

    CAS  PubMed  Article  Google Scholar 

  • Cateau E, Verdon J, Fernandez B, Hechard Y (2011) Acanthamoeba sp. promotes the survival and growth of Acinetobacter baumanii. FEMS Microbiol Let 319:19–25

    CAS  Article  Google Scholar 

  • Chen X, Stewart PS (2002) Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol 59(6):718–720

    CAS  PubMed  Article  Google Scholar 

  • Das T, Sharma PK, Busscher HJ, Van Der Mei HC, Krom BP (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76(10):3405–3408

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Douesnard-Malo F, Daigle F (2011) Increased persistence of Salmonella enterica serovar Typhi in the presence of Acanthamoeba castellanii. Appl Environ Microbiol 77(21):7640–7646

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control) (2015) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J 13:1e162

  • Feng Y, Hsiao YH, Chen HL, Chu C, Tang P, Chiu CH (2009) Apoptosis-like cell death induced by Salmonella in Acanthamoeba rhysodes. Genomics 94(2):132–137

    CAS  PubMed  Article  Google Scholar 

  • Garcia B, Latasa C, Solano C, Garcia-del Portillo F, Gamazo C, Lasa I (2004) Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 54:264–277

    CAS  PubMed  Article  Google Scholar 

  • Gaze WH, Burroughs N, Gallagher MP, Wellington EM (2003) Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and observation of a new mode of intracellular growth within contractile vacuoles. Microb Ecol 46:358–369

    CAS  PubMed  Article  Google Scholar 

  • Gerstel U, Römling U (2003) The csgD promoter, a control unit for biofilm formation in Salmonella Typhimurium. Res Microbiol 154(10):659–667

    CAS  PubMed  Article  Google Scholar 

  • Grantcharova N, Peters V, Monteiro C, Zakikhany K, Romling U (2010) Bistable expression of CsgD in biofilm development of Salmonella enterica serovar Typhimurium. J Bacteriol 192:456–466

    CAS  PubMed  Article  Google Scholar 

  • Guimaraes AJ, Gomes KX, Cortines JR, Peralta JM (2016) Acanthamoeba spp. as a universal host for pathogenic microorganisms: one bridge from environment to host virulence. Microbiol Res 193:30–38

    PubMed  Article  Google Scholar 

  • Hendriksen RS, Vieira AR, Karlsmose S, Wong DMA, Jensen AB, Wegener HC et al (2011) Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 8:887–900

    PubMed  Article  Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332

    PubMed  Article  CAS  Google Scholar 

  • Huws SA, McBain AJ, Gilbert P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98:238–244

    CAS  PubMed  Article  Google Scholar 

  • Jeong HJ, Jang ES, Han BI, Lee KH, Ock MS, Kong HH et al (2007) Acanthamoeba: could it be an environmental host of Shigella? Exp Parasitol 115:181–186

    CAS  PubMed  Article  Google Scholar 

  • Joubert LM, Wolfaardt GM, Botha A (2006) Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb Ecol 52(2):187–197

    PubMed  Article  Google Scholar 

  • Kaminskaya A, Pushkareva V, Moisenovich M, Stepanova T, Volkova N, Romanova J et al (2007) Stimulation of biofilm formation by insertion of Tetrahymena pyriformis wells within Burkholderia cenocepacia biofilms. Mol Gen Microbiol Virol 22:186–194

    Article  Google Scholar 

  • Karunakaran E, Biggs CA (2011) Mechanisms of Bacillus cereus biofilm formation: an investigation of the physicochemical characteristics of cell surfaces and extracellular proteins. Appl Microbiol Biotechnol 89(4):1161–1175

    CAS  PubMed  Article  Google Scholar 

  • Lamas A, Miranda JM, Vázquez B, Cepeda A, Franco CM (2016) Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions. Int J Food Microbiol 238:63–67

    CAS  PubMed  Article  Google Scholar 

  • Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penades JR et al (2005) BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58:1322–1339

    CAS  PubMed  Article  Google Scholar 

  • Latasa C, Solano C, Penades JR, Lasa I (2006) Biofilm-associated proteins. C R Biol 329:849–857

    CAS  PubMed  Article  Google Scholar 

  • Ledeboer NA, Frye JG, McClelland M, Jones BD (2006) Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on Hep-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 74(6):3156–3169

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lee SH, Jung BY, Rayamahji N, Lee HS, Jeon WJ, Choi KS, Kweon CH, Yoo HS (2009) A multiplex real-time PCR for differential detection and quantification of Salmonella spp., Salmonella enterica serovar Typhimurium and Enteritidis in meats. J Vet Sci 10:43–51

    PubMed  PubMed Central  Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Article  Google Scholar 

  • Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. As agents of disease in humans. Clin Microbiol Rev 16:273–307

    PubMed  PubMed Central  Article  Google Scholar 

  • Okshevsky M, Meyer RL (2015) The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol 41(3):341–352

    CAS  PubMed  Article  Google Scholar 

  • Raunkjær K, Hvitved-Jacobsen T, Nielsen PH (1994) Measurement of pools of protein: carbohydrate and lipid in domestic wastewater. Water Res 28:12

    Article  Google Scholar 

  • Romling U, Rohde M, Olsen A, Normark S, Reinkoster J (2000) AgfD, the checkpoint of multicellular and aggregative behavior in Salmonella Typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23

    CAS  PubMed  Article  Google Scholar 

  • Saeed A, Abd H, Edvinsson B, Sandström G (2009) Acanthamoeba castellanii an environmental host for Shigella dysenteriae and Shigella sonnei. Arch Microbiol 191(1):83–88

    CAS  PubMed  Article  Google Scholar 

  • Sambrook J, Russell DW (2006) Standard ethanol precipitation of DNA in microcentrifuge tubes. Cold Spring Harbor Protocols 1: pdb.prot4456

  • Simm R, Fetherston JD, Kader A, Romling U, Perry RD (2005) Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187:6816–6823

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ (2012) Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 45:502–531

    CAS  Article  Google Scholar 

  • Tang L, Schramm A, Neu TR, Revsbech NP, Meyer RL (2013) Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study. FEMS Microbiol Ecol 86(3):394–403

    CAS  PubMed  Article  Google Scholar 

  • Tezcan-Merdol D, Ljungström M, Winiecka-Krusnell J, Linder E, Engstrand L, Rhen M (2004) Uptake and replication of Salmonella enterica in Acanthamoeba rhysodes. Appl Environ Microbiol 70(6):3706–3714

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Thomas V, McDonnell G, Denyer SP, Maillard JY (2010) Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 34:231–259

    CAS  PubMed  Article  Google Scholar 

  • Verhoeven AB, Durham-Colleran MW, Pierson T, Boswell WT, Van Hoek ML (2010) Francisella philomiragia biofilm formation and interaction with the aquatic protist Acanthamoeba castellanii. Biol Bull 219(2):178–188

    PubMed  Article  Google Scholar 

  • Wang H, Ding S, Wang G, Xu X, Zhou G (2013) In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach. Int J Food Microbiol 167:293–302

    CAS  PubMed  Article  Google Scholar 

  • Wang H, Dong Y, Wang G, Xu X, Zhou G (2016) Effect of growth media on gene expression levels in Salmonella Typhimurium biofilm formed on stainless steel surface. Food Cont 59:546–552

    CAS  Article  Google Scholar 

  • Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 7:1593–1601

    CAS  PubMed  Article  Google Scholar 

  • Wey J, Scherwass A, Norf H, Arndt H, Weitere M (2008) Effects of protozoan grazing within river biofilms under semi-natural conditions. Aquat Microb Ecol 52:283–296

    Article  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    CAS  PubMed  Article  Google Scholar 

  • Wu J, Xi C (2009) Evaluation of different methods for extracting extracellular DNA from the biofilm matrix. Appl Environ Microbiol 75(16):5390–5395

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zarei M, Ghahfarokhi ME, Fazlara A, Bahrami S (2019) Effect of the bacterial growth phase and coculture conditions on the interaction of Acanthamoeba castellanii with Shigella dysenteriae, Shigella flexneri, and Shigella sonnei. J Basic Microbiol 59(7):735–743

    CAS  PubMed  Article  Google Scholar 

  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella Typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

This research was supported by the Faculty of Veterinary Medicine at the University of Calgary, Alberta Livestock and Meat Agency grant 2012R006R, and Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MZ, SB, and KL designed the research. MZ and SB performed the experiments. MZ and SB performed data analysis, prepared the figures, and wrote the manuscript, with contributions from KL.

Corresponding author

Correspondence to Mehdi Zarei.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarei, M., Bahrami, S. & Liljebjelke, K. Biofilm formation of Salmonella enterica serovar Enteritidis cocultured with Acanthamoeba castellanii responds to nutrient availability. Int Microbiol (2022). https://doi.org/10.1007/s10123-022-00252-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-022-00252-x

Keywords

  • Acanthamoeba, Biofilm
  • Transcript copy number
  • Salmonella Enteritidis