Bacterial community characterization of Batura Glacier in the Karakoram Range of Pakistan

Abstract

High-altitude cold habitats of the Karakoram are rarely explored for their bacterial community characterization and metabolite productions. In the present study, bacterial communities in ice, water, and sediments of Batura Glacier were investigated using culture-dependent and culture-independent methods. Twenty-seven cold-adapted bacterial strains (mostly psychrotrophic) were isolated using R2A, Tryptic Soy Agar (TSA), and Luria-Bertani (LB) media, at 4 °C and 15 °C. Most of the isolates exhibited growth at a wide range of temperature (4–35 °C), pH (5–12), and salinity (1–6%). Among the bacterial isolates, 52% were identified as Gram-positive and the remaining 48% represented as Gram-negative. The results of phylogenetic analysis indicated that all the culturable bacteria belonged to 3 major phylogenetic groups, i.e., Actinobacteria (48%), Bacteroidetes (26%), and Proteobacteria (22%), while Flavobacterium (26%), Arthrobacter (22%), and Pseudomonas (19%) were represented as the dominant genera. Similarly, Illumina amplicon sequencing of 16S rRNA genes after PCR amplification of DNA from the whole community revealed dominance of the same phylogenetic groups, Proteobacteria, Actinobacteria, and Bacteroidetes, while Arthrobacter, Mycoplana, Ochrobactrum, Kaistobacter, Janthinobacterium, and Flavobacterium were found as the dominant genera. Among the culturable isolates, 70% demonstrated activity for cellulases, 48% lipases, 41% proteases, 41% DNases, and only 7% for amylases. Most of the glacial isolates demonstrated antimicrobial activity against other microorganisms including the multiple-drug-resistant strains of Candida albicans, Klebsiella pneumoniae, Acinetobacter sp., and Bacillus sp. 67% of Gram-negative while 46% of Gram-positive glacial bacteria were resistant to trimethoprim/sulfamethoxazole. Resistance against methicillin and vancomycin among the Gram-positive isolates was 23% and 15%, respectively, while 11% of the Gram-negative isolates exhibited resistance against both colistin sulfate and nalidixic acid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ali P, Shah AA, Hasan F, Cai H, Sosa A, Chen F (2019a) Draft genome sequence of a cold-adapted Pseudomonas sp. strain, BGI-2, isolated from the ice of Batura Glacier, Pakistan. Microbiol Resour Announc 8:e00320–e00319. https://doi.org/10.1128/mra.00320-19

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ali P, Hasan F, Khan S, Badshah M, Shah AA (2019b) Cold-adapted halotolerant Rhodococcus sp. BGI-11, candidate for biotechnological applications. Int J Biosci 15:475–489. https://doi.org/10.12692/ijb/15.2.475-489

    CAS  Article  Google Scholar 

  3. Ali P, Shah AA, Hasan F, Hertkorn N, Gonsior M, Sajjad W, Chen F (2020) A glacier bacterium produces high yield of cryoprotective exopolysaccharide. Front Microbiol 10:3096. https://doi.org/10.3389/fmicb.2019.03096

    Article  PubMed  PubMed Central  Google Scholar 

  4. Antony R, Krishnan KP, Laluraj CM, Thamban M, Dhakephalkar PK, Engineer AS, Shivaji S (2012) Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core. Microbiol Res 167:372–380. https://doi.org/10.1016/j.micres.2012.03.003

    CAS  Article  PubMed  Google Scholar 

  5. Arulazhagan P, Vasudevan N (2011) Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62:388–394. https://doi.org/10.1016/j.marpolbul.2010.09.020

    CAS  Article  PubMed  Google Scholar 

  6. Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443. https://doi.org/10.1099/mic.0.052209-0

    CAS  Article  PubMed  Google Scholar 

  7. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

    CAS  Article  PubMed  Google Scholar 

  8. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690. https://doi.org/10.1038/nrmicro3522

    CAS  Article  PubMed  Google Scholar 

  9. Booth C (1971) Methods in microbiology (Vol. 4). Academic Press

  10. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381. https://doi.org/10.1016/j.tim.2010.05.002

    CAS  Article  PubMed  Google Scholar 

  12. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460. https://doi.org/10.1111/j.1751-7915.2011.00258.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261. https://doi.org/10.1016/S0958-1669(02)00317-8

    CAS  Article  PubMed  Google Scholar 

  14. Chattopadhyay MK, Jagannadham MV (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24:386–388. https://doi.org/10.1007/s003000100232

    Article  Google Scholar 

  15. Chen F, Lu JR, Binder B, Hodson RE (2001) Enumeration of viruses in aquatic environments using SYBR gold stain: application of digital image analysis and flow cytometer. Appl Environ Microbiol 67:539–545. https://doi.org/10.1128/AEM.67.2.539-545.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Cheng SM, Foght JM (2007) Cultivation-independent and-dependent characterization of bacteria resident beneath John Evans Glacier. FEMS Microbiol Ecol 59:318–330. https://doi.org/10.1111/j.1574-6941.2006.00267.x

    CAS  Article  PubMed  Google Scholar 

  17. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577. https://doi.org/10.1046/j.1462-2920.2001.00226.x

    CAS  Article  PubMed  Google Scholar 

  18. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485. https://doi.org/10.1006/icar.1999.6288

    Article  Google Scholar 

  19. Collins T, Margesin R (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 103:2857–2871. https://doi.org/10.1007/s00253-019-09659-5

    CAS  Article  PubMed  Google Scholar 

  20. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389. https://doi.org/10.1038/sj.embor.7400662

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct Antarct Alp Res 42:396–405. https://doi.org/10.1657/1938-4246-42.4.396

    Article  Google Scholar 

  22. Ermakova IT, Shushkova TV, Sviridov AV, Zelenkova NF, Vinokurova NG, Baskunov BP, Leontievsky AA (2017) Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp. Arch Microbiol 199:665–675. https://doi.org/10.1007/s00203-017-1343-8

    CAS  Article  PubMed  Google Scholar 

  23. Fong N, Burgess M, Barrow K, Glenn D (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756. https://doi.org/10.1007/s002530100739

    CAS  Article  PubMed  Google Scholar 

  24. Ganasen M, Yaacob N, Rahman RNZRA, Leow ATC, Basri M, Salleh AB, Ali MSM (2016) Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. Int J Biol Macromol 92:1266–1276. https://doi.org/10.1016/j.ijbiomac.2016.06.095

    CAS  Article  PubMed  Google Scholar 

  25. Gratia E, Weekers F, Margesin R, D’Amico S, Thonart P, Feller G (2009) Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13:763–768. https://doi.org/10.1007/s00792-009-0264-0

    CAS  Article  PubMed  Google Scholar 

  26. Hatosy SM, Martiny AC (2015) The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol 81:7593–7599. https://doi.org/10.1128/AEM.00736-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’ Karakoram Himalaya. Mt Res Dev 25:332–340. https://doi.org/10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2

    Article  Google Scholar 

  28. Hewitt K (2014) Glaciers of the Karakoram Himalaya: glacial environments, processes, hazards and resources. Springer, Netherlands. https://doi.org/10.1007/978-94-007-6311-1

    Google Scholar 

  29. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67. https://doi.org/10.1890/07-0187.1

    Article  Google Scholar 

  30. Hodson A, Porter P, Lowe A, Mumford P (2002) Chemical denudation and silicate weathering in Himalayan glacier basins: Batura Glacier, Pakistan. J Hydrol 262:193–208. https://doi.org/10.1016/S0022-1694(02)00036-7

    CAS  Article  Google Scholar 

  31. Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (2010) Extremophiles handbook. Springer, Berlin

    Google Scholar 

  32. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507. https://doi.org/10.1007/s00284-008-9276-8

    CAS  Article  PubMed  Google Scholar 

  33. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1–e1. https://doi.org/10.1093/nar/gks808

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Priscu JC, Yao T, Vick-Majors TJ, Michaud AB, Sheng L (2018) Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau. J Glaciol 65:29–38. https://doi.org/10.1017/jog.2018.86

    Article  Google Scholar 

  35. Liu Y, Yao T, Jiao N, Kang S, Xu B, Zeng Y, Huang S, Liu X (2009) Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles 13:411–423. https://doi.org/10.1007/s00792-009-0227-5

    CAS  Article  PubMed  Google Scholar 

  36. Lopez EG, Rodriguez-Lorente I, Alcazar P, Cid C (2018) Microbial communities in coastal glaciers and tidewater tongues of Svalbard Archipelago, Norway. Front Mar Sci 5:512. https://doi.org/10.3389/fmars.2018.00512

    Article  Google Scholar 

  37. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361. https://doi.org/10.1016/j.resmic.2010.12.004

    Article  PubMed  Google Scholar 

  38. Margesin R, Gander S, Zacke G, Gounot AM, Schinner F (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458. https://doi.org/10.1007/s00792-003-0347-2

    CAS  Article  PubMed  Google Scholar 

  39. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581. https://doi.org/10.1111/j.1462-2920.2008.01572.x

    CAS  Article  PubMed  Google Scholar 

  40. Menéndez E, Ramírez-Bahena MH, Fabryová A, Igual JM, Benada O, Mateos PF, Peix A, Kolařík M, García-Fraile P (2015) Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int J Syst Evol Microbiol 65:2852–2858. https://doi.org/10.1099/ijs.0.000344

    CAS  Article  PubMed  Google Scholar 

  41. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213. https://doi.org/10.1128/aem.70.1.202-213.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Moyer CL, Morita RY (2007) Psychrophiles and psychrotrophs. John Wiley and Sons, Ltd. eLS. https://doi.org/10.1002/9780470015902.a0000402.pub2

  43. O'Brien A, Sharp R, Russell NJ, Roller S (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48:157–167. https://doi.org/10.1016/j.femsec.2004.01.001

    CAS  Article  PubMed  Google Scholar 

  44. Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41:711–753

    CAS  Article  Google Scholar 

  45. Rafiq M, Hayat M, Anesio AM, Jamil S, Hassan N, Shah AA, Hasan F (2017) Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. PLoS One 12:e0178180. https://doi.org/10.1371/journal.pone.0178180

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Rankl M, Kienholz C, Braun M (2014) Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 8:977–989. https://doi.org/10.5194/tc-8-977-2014

    Article  Google Scholar 

  47. Rassner SM, Anesio AM, Girdwood SE, Hell K, Gokul JK, Whitworth DE, Edwards A (2016) Can the bacterial community of a high Arctic glacier surface escape viral control? Front Microbiol 7:956. https://doi.org/10.3389/fmicb.2016.00956

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rasul G, Chaudhry QZ, Mahmood A, Hyder KW, Dahe Q (2011) Glaciers and glacial lakes under changing climate in Pakistan. Pakisan J Meteorol 8:1–8

    Google Scholar 

  49. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  Article  Google Scholar 

  50. Reddy PVV, Rao SSSN, Pratibha MS, Sailaja B, Kavya B, Manorama RR, Singh SM, Srinivas TNR, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre Lov´ enbreen glacier, an Arctic glacier. Res Microbiol 160:538–546. https://doi.org/10.1016/j.resmic.2009.08.008

    CAS  Article  Google Scholar 

  51. Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74:1677–1686. https://doi.org/10.1128/AEM.02000-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond Ser B Biol Sci 326:595–611. https://doi.org/10.1098/rstb.1990.0034

    CAS  Article  Google Scholar 

  53. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    CAS  Article  Google Scholar 

  54. Sánchez LA, Gómez FF, Delgado OD (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13:111–120. https://doi.org/10.1007/s00792-008-0203-5

    CAS  Article  PubMed  Google Scholar 

  55. Irvine-Fynn TD, Edwards A (2014) A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytometry Part A 85:3–7. https://doi.org/10.1002/cyto.a.22411

    Article  Google Scholar 

  56. Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, Shinbori K, Motoyama H, Kohshima S, Ushida K (2013) Distribution of antibiotic resistance genes in glacier environments. Environ Microbiol Rep 5:127–134. https://doi.org/10.1111/1758-2229.12011

    CAS  Article  PubMed  Google Scholar 

  57. Segawa T, Yoshimura Y, Watanabe K, Kanda H, Kohshima S (2011) Community structure of culturable bacteria on surface of Gulkana Glacier, Alaska. Polar Sci 5:41–51. https://doi.org/10.1016/j.polar.2010.12.002

    Article  Google Scholar 

  58. Shen L, Liu Y, Wang N, Jiao N, Xu B, Liu X (2018) Variation with depth of the abundance, diversity and pigmentation of culturable bacteria in a deep ice core from the Yuzhufeng Glacier, Tibetan Plateau. Extremophiles 22:29–38. https://doi.org/10.1007/s00792-017-0973-8

    Article  PubMed  Google Scholar 

  59. Shivaji S, Pratibha MS, Sailaja B, Kishore KH, Singh AK, Begum Z, Anarasi U, Prabagaran SR, Reddy GSN, Srinivas TNR (2011) Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15:1–22. https://doi.org/10.1007/s00792-010-0333-4

    CAS  Article  PubMed  Google Scholar 

  60. Silva TR, Duarte AW, Passarini MR, Ruiz ALT, Franco CH, Moraes CB, de Melo IS, Rodrigues RA, Fantinatti-Garboggini F, Oliveira VM (2018) Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol 41:1505–1519. https://doi.org/10.1007/s00300-018-2300-y

    Article  Google Scholar 

  61. Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523. https://doi.org/10.1111/j.1574-6941.2006.00247.x

    CAS  Article  PubMed  Google Scholar 

  62. Tam HK, Wong CMVL, Yong ST, Blamey J, González M (2015) Multiple-antibiotic-resistant bacteria from the maritime Antarctic. Polar Biol 38:1129–1141. https://doi.org/10.1007/s00300-015-1671-6

    Article  Google Scholar 

  63. Tedesco P, Maida I, Palma Esposito F, Tortorella E, Subko K, Ezeofor C, Zhang Y, Tabudravu J, Jaspars M, Fani R, de Pascale D (2016) Antimicrobial activity of monoramnholipids produced by bacterial strains isolated from the Ross Sea (Antarctica). Mar Drugs 14:83. https://doi.org/10.3390/md14050083

    CAS  Article  PubMed Central  Google Scholar 

  64. Thakur V, Kumar V, Kumar S, Singh D (2018) Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya. Can J Microbiol 64:798–808. https://doi.org/10.1139/cjm-2017-0754

    CAS  Article  PubMed  Google Scholar 

  65. Tribelli P, López N (2018) Reporting key features in cold-adapted bacteria. Life 8:8. https://doi.org/10.3390/life8010008

    CAS  Article  PubMed Central  Google Scholar 

  66. Van Goethem MW, Pierneef R, Bezuidt OK, Van De Peer Y, Cowan DA, Makhalanyane TP (2018) A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6:40. https://doi.org/10.1186/s40168-018-0424-5

    Article  PubMed  PubMed Central  Google Scholar 

  67. Venkatachalam S, Gowdaman V, Prabagaran SR (2015) Culturable and culture-independent bacterial diversity and the prevalence of cold-adapted enzymes from the Himalayan mountain ranges of India and Nepal. Microb Ecol 69:472–491. https://doi.org/10.1007/s00248-014-0476-4

    CAS  Article  PubMed  Google Scholar 

  68. Yang GL, Hou SG, Le Baoge R, Li ZG, Xu H, Liu YP, Du WT, Liu YQ (2016) Differences in bacterial diversity and communities between glacial snow and glacial soil on the chngce ice cap, west Kunlun Mountains. Sci Rep 6:36548. https://doi.org/10.1038/srep36548

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Zeng R, Zhang R, Zhao J, Lin N (2003) Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles 7:335–337. https://doi.org/10.1007/s00792-003-0323-x

    CAS  Article  PubMed  Google Scholar 

  71. Zhang DC, Brouchkov A, Griva G, Schinner F, Margesin R (2013) Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology 2:85–106. https://doi.org/10.3390/biology2010085

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang XF, Yao TD, Tian LD, Xu SJ, An LZ (2008) Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microb Ecol 55:476–488. https://doi.org/10.1007/s00248-007-9293-3

    CAS  Article  PubMed  Google Scholar 

  73. Zhao Y, Song C, Dong H, Luo Y, Wei Y, Gao J, Wu Q, Huang Y, An L, Sheng H (2018) Community structure and distribution of culturable bacteria in soil along an altitudinal gradient of Tianshan Mountains, China. Biotechnol Biotechnol Equip 32:397–407. https://doi.org/10.1080/13102818.2017.1396195

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the International Research Support Initiative Program–Higher Education Pakistan (IRSIP–HEC) for providing fellowship to conduct this research in the Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Sciences (UMCES) Maryland, USA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aamer Ali Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, P., Chen, F., Hassan, F. et al. Bacterial community characterization of Batura Glacier in the Karakoram Range of Pakistan. Int Microbiol (2021). https://doi.org/10.1007/s10123-020-00153-x

Download citation

Keywords

  • Batura Glacier
  • Karakoram
  • Cold-adapted bacteria
  • Psychrotrophs
  • Metagenomics