Skip to main content
Log in

Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Siderophores (Gk iron carriers) are low molecular weight secondary metabolites produced by bacteria, fungi, and plants that have strong binding affinity for iron. Owing to their iron-chelating ability, they are produced mainly when the organism faces iron scarcity. The present study empirically investigated the importance of applying hydroxamate siderophore extracted from Aspergillus nidulans to the cells of Bacillus subtilis for bioremediation of cadmium salt. This investigation deals with siderophore-mediated intracellular Cd accumulation by bacterial cells, growth estimation, biochemical assays like lipid peroxidation, total protein content, carbohydrate content, and iron content estimation. In silico docking and STRING analyses revealed specific interaction between Aspergillus siderophore and receptors present on B. subtilis. Estimation of intracellular Cd by atomic absorption spectroscopy showed more accumulation of Cd ions by B. subtilis in the presence of hydroxamate siderophore. This suggests a possibility of confiscating environmental Cd2+ by utilizing metal chelation property of siderophores and hence can lead to emerging bioremediation mechanisms for heavy metals. In silico studies support experimental investigation and suggest higher affinity of siderophore for Cd ions as compared with ferric ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications: minireview. Microb Biotechnol 7:196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AlKhader AMF (2015) The impact of phosphorus fertilizers on heavy metals content of soils and vegetables grown on selected farms in Jordan. Agrotechnol 5:137

    Article  Google Scholar 

  • Arceneaux J, Boutwell M, Byers B (1984) Enhancement of copper toxicity by siderophores in Bacillus megaterium. Antimicrob Agents Chemother 25(5):650–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin CL, Neilands JB, Phaff H (1970) Rhodotorulic acid from species of Rhodospirillum, Rhodotorula, Sporidiobolus and Sporobolomyces. J Bacteriol 103:722–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biryukova E, Arinbasarova A, Suzina N, Sorokin V, Medentsev A (2011) Ultrastructural changes in Yarrowia lipolytica cells under stress conditions. Microbiology 80(3):350–354

    Article  CAS  Google Scholar 

  • Bitew Y, Alemayehu M (2017) Impact of crop production inputs on soil health: a review. Asian J Plant Sci 16(3):109–131

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi KS, Henderson JP (2014) Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol 4:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Chel GB, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Haas H, Zadra I, Stoffler G, Angermayr K (1999) The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 274:4613–4619

    Article  CAS  PubMed  Google Scholar 

  • Heath R, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hesse E, O’Brien S, Tromas N, Bayer F, Lujan A, Veen EV, Hodgson DJ, Buckling A (2018) Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol Lett 21:117–127

    Article  PubMed  Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator – siderophore: a review. Microbiol Res 212-213:103–111

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Khan A, Singh P, Dwivedi S, Ojha KK, Srivastava A (2019) Mitigation of As toxicity in wheat by exogenous application of hydroxamate siderophore of Aspergillus origin. Acta Physiol Plant 41(7). In press. https://doi.org/10.1007/s11738-019-2902-1

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Lemire J, Harrison J, Turner R (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  CAS  PubMed  Google Scholar 

  • Lim CK, Hassan KA, Penesyan A, Loper JE, Paulsen IT (2013) The effect of zinc limitation on the transcriptome of Pseudomonas protegens Pf-5. Environ Microbiol 15:702–715

    Article  CAS  PubMed  Google Scholar 

  • Miethke M, Kraushaar T, Marahiel MA (2013) Uptake of xenosiderophores in Bacillus subtilis occurs with high affinity and enhances the folding stabilities of substrate binding proteins. FEBS Lett 587:206–213

    Article  CAS  PubMed  Google Scholar 

  • Moore C, Gaballa A, Hui M, Ye R, Helmann J (2005) Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol Microbiol 57(1):27–40

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    Article  CAS  PubMed  Google Scholar 

  • O’Brien S, Hodgson DJ, Buckling A (2014) Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc R Soc B 281:20140858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • O’Brien S, Luján AM, Paterson S, Cant MA, Buckling A (2017) Adaptation to public goods cheats in Pseudomonas aeruginosa. Proc R Soc B 284:20171089

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD (2006) Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 188:3664–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi H, Helmann J (2017) Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis. Proc Natl Acad Sci U S A 114(48):12785–12790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto L, Moore M (2009) Screening method to identify inhibitors of siderophore biosynthesis in the opportunistic fungal pathogen, Aspergillus fumigatus. Lett Appl Microbiol 49(1):8–13

    Article  CAS  PubMed  Google Scholar 

  • Pratush A, Kumar A, Hu Z (2018) Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 21(3):97–106

    Article  CAS  PubMed  Google Scholar 

  • Rashmi V, Shylaja M, Naciyar R, Rajalakshmi SF, D'Souza D, Prabaharan L, Uma (2013) Siderophore mediated uranium sequestration by marine cyanobacterium Synechococcus elongatus BDU 130911. Bioresour Technol 130:204–210

    Article  CAS  PubMed  Google Scholar 

  • Sabae S, Hazaa M, Hallim S, Awny N, Daboor S (2006) Bioremediation of Zn+2, Cu+2 and Fe+2 using Bacillus subtilis D215 and Pseudomonas putida biovar A D225. Biosci Res 3:189–204

    Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):77–80

    CAS  Google Scholar 

  • Saywell LG, Cunningham BB (1937) Determination of iron: colorimetric o-phenanthroline method. Ind Eng Chem Anal Ed 9(2):67–69

    Article  CAS  Google Scholar 

  • Schalk I, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

  • Singh A, Kaushik M, Srivastava M, Tiwari D, Mishra A (2016) Siderophore mediated attenuation of cadmium toxicity by paddy field cyanobacterium Anabaena oryzae. Algal Res 16:63–68

    Article  Google Scholar 

  • Stolz J, Basu P, Oremland R (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5(4):201–207

    Article  CAS  PubMed  Google Scholar 

  • Stevenson K, McVey A, Clark I, Swain P, Pilizota T (2016) General calibration of microbial growth in microplate readers. Sci Rep 6(1):38828. https://doi.org/10.1038/srep38828

  • Substance Priority List (2015) 2015 ATSDR Substance Priority List. Agency for Toxic Substances and Disease Registry (ATSDR). https://www.atsdr.cdc.gov/spl/resources/2015_atsdr_substance_priority_list.html. Accessed 12 May 2019

  • Sueoka N (1997) Cell membrane and chromosome replication in Bacillus subtilis. Prog Nucleic Acid Res Mol Biol 59:35–53

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

Download references

Acknowledgments

The authors Azmi Khan and Pratika Singh are thankful to the University Grant Commission, New Delhi, for providing financial support as fellowship.

Funding

The authors Azmi Khan and Pratika Singh are receiving financial support from University Grant Commission, New Delhi, in the form of non-NET fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Srivastava.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Gupta, A., Singh, P. et al. Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis. Int Microbiol 23, 277–286 (2020). https://doi.org/10.1007/s10123-019-00101-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-019-00101-4

Keywords

Navigation