Skip to main content

Conidiation in Neurospora crassa: vegetative reproduction by a model fungus

Abstract

Asexual development, conidiation, in the filamentous fungus Neurospora crassa is a simple developmental process that starts with the growth of aerial hyphae. Then, the formation of constrictions and subsequent maturation gives rise to the mature conidia that are easily dispersed by air currents. Conidiation is regulated by environmental factors such as light, aeration and nutrient limitation, and by the circadian clock. Different regulatory proteins acting at different stages of conidiation have been described. The role of transcription factors such as FL, and components of signal transduction pathways such as the cAMP phosphodiesterase ACON-2 suggest a complex interplay between differential transcription and signal transduction pathways. Comparisons between the molecular basis of conidiation in N. crassa and other filamentous fungi will help to identify common regulatory elements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adams TH, Deising H, Timberlake WE (1990) brlA requires both zinc fingers to induce development. Mol Cell Biol 10:1815–1817

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Adams TH, Wieser JK, Yu JH (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Bailey LA, Ebbole DJ (1998) The fluffy gene of Neurospora crassa encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics 148:1813–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bailey-Shrode L, Ebbole DJ (2004) The fluffy gene of Neurospora crassa is necessary and sufficient to induce conidiophore development. Genetics 166:1741–1749

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Barba-Ostria C, Lledías F, Georgellis D (2011) The Neurospora crassa DCC-1 protein, a putative histidine kinase, is required for normal sexual and asexual development and carotenogenesis. Eukaryot Cell 10:1733–1739. https://doi.org/10.1128/EC.05223-11

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Barman A, Tamuli R (2017) The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1. Curr Genet 63:861–875. https://doi.org/10.1007/s00294-017-0682-y

    CAS  PubMed  Article  Google Scholar 

  8. Bayram O, Krappmann S, Seiler S, Vogt N, Braus GH (2008) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138. https://doi.org/10.1016/j.fgb.2007.06.001

    CAS  PubMed  Article  Google Scholar 

  9. Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen C-H, Loros JJ, Dunlap JC (2007) The band mutation in Neurospora crassa is a dominant allele of RAS-1 implicating RAS signaling in circadian output. Genes Dev 21:1494–1505. https://doi.org/10.1101/gad.1551707

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Bell-Pedersen D, Dunlap JC, Loros JJ (1992) The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev 6:2382–2394

    CAS  PubMed  Article  Google Scholar 

  11. Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) Systematics and evolution. Springer, Berlin Heidelberg, pp 229–245. https://doi.org/10.1007/978-3-662-10189-6_10

    Chapter  Google Scholar 

  12. Berepiki A, Read ND (2013) Septins are important for cell polarity, septation and asexual spore formation in Neurospora crassa and show different patterns of localisation at germ tube tips. PLoS One 8:e63843. https://doi.org/10.1371/journal.pone.0063843

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Boni AC et al (2018) Neurospora crassa developmental control mediated by the FLB-3 transcription factor. Fungal Biol. 122:570–582. https://doi.org/10.1016/j.funbio.2018.01.004

    CAS  PubMed  Article  Google Scholar 

  14. Borkovich KA et al (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Brunner M, Schafmeier T (2006) Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Dev 20:1061–1074. https://doi.org/10.1101/gad.1410406

    CAS  PubMed  Article  Google Scholar 

  16. Cabrera IE et al (2015) Global analysis of predicted G protein-coupled receptor genes in the filamentous fungus, Neurospora crassa. G3 (Bethesda) 5:2729–2743. https://doi.org/10.1534/g3.115.020974

    CAS  Article  Google Scholar 

  17. Carrillo AJ et al (2017) Functional profiling of transcription factor genes in Neurospora crassa. G3 (Bethesda, Md) 7:2945–2956. https://doi.org/10.1534/g3.117.043331

    CAS  Article  Google Scholar 

  18. Chen C-H, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–1042. https://doi.org/10.1038/emboj.2009.54

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Chung D-W, Greenwald C, Upadhyay S, Ding S, Wilkinson HH, Ebbole DJ, Shaw BD (2011) Acon-3, the Neurospora crassa ortholog of the developmental modifier, medA, complements the conidiation defect of the Aspergillus nidulans mutant. Fungal Genet Biol 48:370–376. https://doi.org/10.1016/j.fgb.2010.12.008

    CAS  PubMed  Article  Google Scholar 

  20. Colot HV et al (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103:10352–10357. https://doi.org/10.1073/pnas.0601456103

    CAS  PubMed  Article  Google Scholar 

  21. Correa A, Bell-Pedersen D (2002) Distinct signaling pathways from the circadian clock participate in regulation of rhythmic conidiospore development in Neurospora crassa. Eukaryot Cell 1:273–280

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Corrochano LM, Lauter FR, Ebbole DJ, Yanofsky C (1995) Light and developmental regulation of the gene con-10 of Neurospora crassa. Dev Biol 167:190–200. https://doi.org/10.1006/dbio.1995.1016

    CAS  PubMed  Article  Google Scholar 

  23. Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763–769

    CAS  PubMed  Article  Google Scholar 

  24. Davis RH, Perkins DD (2002) Timeline: Neurospora: a model of model microbes. Nat Rev Genet 3:397–403. https://doi.org/10.1038/nrg797

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Dunlap JC (2006) Proteins in the Neurospora circadian clockworks. J Biol Chem 281:28489–28493. https://doi.org/10.1074/jbc.R600018200

    CAS  PubMed  Article  Google Scholar 

  26. Dunlap JC, Loros JJ (2004) The neurospora circadian system. J Biol Rhythm 19:414–424. https://doi.org/10.1177/0748730404269116

    CAS  Article  Google Scholar 

  27. Dunlap JC, Loros JJ (2006) How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9:579–587. https://doi.org/10.1016/j.mib.2006.10.008

    CAS  PubMed  Article  Google Scholar 

  28. Dunlap JC, Loros JJ (2017) Making time: conservation of biological clocks from fungi to animals. Microbiol Spectr. 5 https://doi.org/10.1128/microbiolspec.FUNK-0039-2016

  29. Dunlap JC et al (2007) A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. Cold Spring Harb Symp Quant Biol 72:57–68. https://doi.org/10.1101/sqb.2007.72.072

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Dvash E, Kra-Oz G, Ziv C, Carmeli S, Yarden O (2010) The NDR kinase DBF-2 is involved in regulation of mitosis, conidial development, and glycogen metabolism in Neurospora crassa. Eukaryot Cell 9:502–513. https://doi.org/10.1128/EC.00230-09

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Feldman D, Ziv C, Gorovits R, Efrat M, Yarden O (2013) Neurospora crassa protein arginine methyl transferases are involved in growth and development and interact with the NDR kinase COT1. PLoS One 8:e80756. https://doi.org/10.1371/journal.pone.0080756

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science (New York, NY) 297:815–819. https://doi.org/10.1126/science.1073681

    CAS  Article  Google Scholar 

  33. Greenwald CJ, Kasuga T, Glass NL, Shaw BD, Ebbole DJ, Wilkinson HH (2010) Temporal and spatial regulation of gene expression during asexual development of Neurospora crassa. Genetics 186:1217–1230. https://doi.org/10.1534/genetics.110.121780

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Häfker T, Techel D, Steier G, Rensing L (1998) Differential expression of glucose-regulated (grp78) and heat-shock-inducible (hsp70) genes during asexual development of Neurospora crassa. Microbiology (Reading, England) 144(Pt 1):37–43

    Article  Google Scholar 

  35. Hansberg W, de Groot H, Sies H (1993) Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic Biol Med 14:287–293

    CAS  PubMed  Article  Google Scholar 

  36. He Q, Liu Y (2005) Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19:2888–2899. https://doi.org/10.1101/gad.1369605

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843. https://doi.org/10.1126/science.1072795

    CAS  PubMed  Article  Google Scholar 

  38. Heintzen C, Liu Y (2007) The Neurospora crassa circadian clock. Adv Genet 58:25–66. https://doi.org/10.1016/S0065-2660(06)58002-2

    CAS  PubMed  Article  Google Scholar 

  39. Ivey FD, Hodge PN, Turner GE, Borkovich KA (1996) The G alpha i homologue gna-1 controls multiple differentiation pathways in Neurospora crassa. Mol Biol Cell 7:1283–1297

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Ivey FD, Yang Q, Borkovich KA (1999) Positive regulation of adenylyl cyclase activity by a galphai homolog in Neurospora crassa. Fungal Genet Biol 26:48–61. https://doi.org/10.1006/fgbi.1998.1101

    CAS  PubMed  Article  Google Scholar 

  41. Ivey FD, Kays AM, Borkovich KA (2002) Shared and independent roles for a Galpha(i) protein and adenylyl cyclase in regulating development and stress responses in Neurospora crassa. Eukaryot Cell 1:634–642. https://doi.org/10.1128/EC.1.4.634

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Jacobson DJ et al (2004) Neurospora in temperate forests of western North America. Mycologia 96:66–74

    PubMed  PubMed Central  Article  Google Scholar 

  43. Jacobson DJ et al (2006) New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales. Mycologia 98:550–559

    PubMed  PubMed Central  Article  Google Scholar 

  44. Kays AM, Borkovich KA (2004) Severe impairment of growth and differentiation in a Neurospora crassa mutant lacking all heterotrimeric G alpha proteins. Genetics 166:1229–1240

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Kays AM, Rowley PS, Baasiri RA, Borkovich KA (2000) Regulation of conidiation and adenylyl cyclase levels by the Galpha protein GNA-3 in Neurospora crassa. Mol Cell Biol 20:7693–7705

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Krystofova S, Borkovich KA (2005) The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gbetagamma dimer required for normal female fertility, asexual development, and galpha protein levels in Neurospora crassa. Eukaryot Cell 4:365–378. https://doi.org/10.1128/EC.4.2.365-378.2005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Lambreghts R et al (2009) A high-density single nucleotide polymorphism map for Neurospora crassa. Genetics 181:767–781. https://doi.org/10.1534/genetics.108.089292

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Lauter FR, Russo VE (1990) Light-induced dephosphorylation of a 33 kDa protein in the wild-type strain of Neurospora crassa: the regulatory mutants wc-1 and wc-2 are abnormal. J Photochem Photobiol B 5:95–103

    CAS  PubMed  Article  Google Scholar 

  49. Lauter FR, Russo VE (1991) Blue light induction of conidiation-specific genes in Neurospora crassa. Nucleic Acids Res 19:6883–6886

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Lauter FR, Russo VE, Yanofsky C (1992) Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev 6:2373–2381

    CAS  PubMed  Article  Google Scholar 

  51. Lee K, Ebbole DJ (1998) Analysis of two transcription activation elements in the promoter of the developmentally regulated con-10 gene of Neurospora crassa. Fungal Genet Biol 23:259–268. https://doi.org/10.1006/fgbi.1998.1043

    CAS  PubMed  Article  Google Scholar 

  52. Li L, Borkovich KA (2006) GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot Cell 5:1287–1300. https://doi.org/10.1128/EC.00109-06

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Li C, Sachs MS, Schmidhauser TJ (1997) Developmental and photoregulation of three Neurospora crassa carotenogenic genes during conidiation induced by desiccation. Fungal Genet Biol 21:101–108

    CAS  PubMed  Article  Google Scholar 

  54. Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423–452. https://doi.org/10.1146/annurev.micro.61.080706.093432

    CAS  PubMed  Article  Google Scholar 

  55. Linden H, Macino G (1997) White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109. https://doi.org/10.1093/emboj/16.1.98

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Luque EM et al. (2012) A relationship between carotenoid accumulation and the distribution of species of the fungus neurospora in spain PLoS ONE 7 doi:https://doi.org/10.1371/journal.pone.0033658

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Madi L, Ebbole DJ, White BT, Yanofsky C (1994) Mutants of Neurospora crassa that alter gene expression and conidia development. Proc Natl Acad Sci USA 91:6226–6230

    CAS  PubMed  Article  Google Scholar 

  58. Madi L, Mcbride SA, Bailey LA, Ebbole DJ (1997) Gene involved i n glucose transport and conidiation i n

  59. Maheshwari R (1991) Microcycle conidiation and its genetic-basis in Neurospora-Crassa. J Gen Microbiol 137:2103–2115. https://doi.org/10.1099/00221287-137-9-2103

    CAS  PubMed  Article  Google Scholar 

  60. Maheshwari R (1999) Microconidia ofNeurospora crassa fungal genetics and biology 26:1-18 doi:https://doi.org/10.1006/FGBI.1998.1103

    CAS  PubMed  Article  Google Scholar 

  61. McCluskey K, Wiest AE, Grigoriev IV, Lipzen A, Martin J, Schackwitz W, Baker SE (2011) Rediscovery by whole genome sequencing: classical mutations and genome polymorphisms in Neurospora crassa. G3 (Bethesda) 1:303–316. https://doi.org/10.1534/g3.111.000307

    CAS  Article  Google Scholar 

  62. Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    CAS  PubMed  Article  Google Scholar 

  63. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639. https://doi.org/10.1126/science.1071550

    CAS  PubMed  Article  Google Scholar 

  64. Ojeda-Lopez M et al (2018) Evolution of asexual and sexual reproduction in the aspergilli. Stud Mycol 91:37–59. https://doi.org/10.1016/j.simyco.2018.10.002

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Olmedo M, Ruger-Herreros C, Corrochano LM (2010a) Regulation by blue light of the fluffy gene encoding a major regulator of conidiation in Neurospora crassa Genetics 184 doi:https://doi.org/10.1534/genetics.109.109975

    PubMed  Article  Google Scholar 

  66. Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2010b) A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa Fungal Genet Biol 47 doi:https://doi.org/10.1016/j.fgb.2009.11.004

    CAS  PubMed  Article  Google Scholar 

  67. Paré A, Kim M, Juarez MT, Brody S, McGinnis W (2012) The functions of grainy head-like proteins in animals and fungi and the evolution of apical extracellular barriers. PLoS One 7:e36254. https://doi.org/10.1371/journal.pone.0036254

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Park H-S, Yu J-H (2012) Genetic control of asexual sporulation in filamentous fungi Curr Opin Microbiol doi:https://doi.org/10.1016/j.mib.2012.09.006

    CAS  PubMed  Article  Google Scholar 

  69. Peraza L, Hansberg W (2002) Neurospora crassa catalases, singlet oxygen and cell differentiation Biol Chem 383:569-575 doi:Doi https://doi.org/10.1515/Bc.2002.058

  70. Perkins DD, Davis RH (2000) Neurospora at the millennium. Fungal Genet Biol 31:153–167. https://doi.org/10.1006/fgbi.2000.1248

    CAS  PubMed  Article  Google Scholar 

  71. Rensing L, Monnerjahn C, Meyer U (1998) Differential stress gene expression during the development of Neurospora crassa and other fungi. FEMS Microbiol Lett 168:159–166

    CAS  PubMed  Article  Google Scholar 

  72. Rerngsamran P, Murphy MB, Doyle SA, Ebbole DJ (2005) Fluffy, the major regulator of conidiation in Neurospora crassa, directly activates a developmentally regulated hydrophobin gene. Mol Microbiol 56:282–297. https://doi.org/10.1111/j.1365-2958.2005.04544.x

    CAS  PubMed  Article  Google Scholar 

  73. Roberts AN, Berlin V, Hager KM, Yanofsky C (1988) Molecular analysis of a Neurospora crassa gene expressed during conidiation. Mol Cell Biol 8:2411–2418

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Roche CM, Loros JJ, McCluskey K, Glass NL (2014) Neurospora Crassa : looking back and looking forward at a model microbe. Am J Bot 101:2022–2035. https://doi.org/10.3732/ajb.1400377

    CAS  PubMed  Article  Google Scholar 

  75. Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in aspergillus nidulans Genetics 188 doi:https://doi.org/10.1534/genetics.111.130096

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Sargent ML, Kaltenborn SH (1972) Effects of medium composition and carbon dioxide on circadian conidiation in <em>Neurospora</em>. Plant Physiol 50:171–175

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Shen WC, Wieser J, Adams TH, Ebbole DJ (1998) The Neurospora rca-1 gene complements an Aspergillus flbD sporulation mutant but has no identifiable role in Neurospora sporulation. Genetics 148:1031–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shomin-Levi H, Yarden O (2017) The Neurospora crassa PP2A regulatory subunits RGB1 and B56 are required for proper growth and development and interact with the NDR kinase COT1. Front Microbiol 8:1694. https://doi.org/10.3389/fmicb.2017.01694

    PubMed  PubMed Central  Article  Google Scholar 

  79. Smith KM et al (2010) Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. Eukaryot Cell 9:1549–1556. https://doi.org/10.1128/EC.00154-10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Springer ML (1993) Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. BioEssays 15:365–374. https://doi.org/10.1002/bies.950150602

    CAS  PubMed  Article  Google Scholar 

  81. Springer ML, Yanofsky C (1989) A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev 3:559–571

    CAS  PubMed  Article  Google Scholar 

  82. Springer ML, Yanofsky C (1992) Expression of con genes along the three sporulation pathways of Neurospora crassa. Genes Dev 6:1052–1057

    CAS  PubMed  Article  Google Scholar 

  83. Springer ML, Hager KM, Garrett-Engele C, Yanofsky C (1992) Timing of synthesis and cellular localization of two conidiation-specific proteins of Neurospora crassa. Dev Biol 152:255–262

    CAS  PubMed  Article  Google Scholar 

  84. Sun X, Zhang H, Zhang Z, Wang Y, Li S (2011) Involvement of a helix-loop-helix transcription factor CHC-1 in CO(2)-mediated conidiation suppression in Neurospora crassa. Fungal Genet Biol 48:1077–1086. https://doi.org/10.1016/j.fgb.2011.09.003

    CAS  PubMed  Article  Google Scholar 

  85. Sun X et al (2012) Analysis of the role of transcription factor VAD-5 in conidiation of Neurospora crassa. Fungal Genet Biol 49:379–387. https://doi.org/10.1016/j.fgb.2012.03.003

    CAS  PubMed  Article  Google Scholar 

  86. Taylor JW, Berbee ML (2006) Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia 98:838–849

    PubMed  Article  Google Scholar 

  87. Taylor JW, Ellison CE (2010) Mushrooms: morphological complexity in the fungi. Proc Natl Acad Sci U S A 107:11655–11656. https://doi.org/10.1073/pnas.1006430107

    PubMed  PubMed Central  Article  Google Scholar 

  88. Turner GE, Borkovich KA (1993) Identification of a G protein alpha subunit from Neurospora crassa that is a member of the Gi family. J Biol Chem 268:14805–14811

    CAS  PubMed  Google Scholar 

  89. Turner BC, Perkins DD, Fairfield A (2001) Neurospora from natural populations: a global study. Fungal Genet Biol 32:67–92. https://doi.org/10.1006/fgbi.2001.1247

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Won S, Michkov AV, Krystofova S, Garud AV, Borkovich KA (2012) Genetic and physical interactions between Gα subunits and components of the Gβγ dimer of heterotrimeric G proteins in Neurospora crassa. Eukaryot Cell 11:1239–1248. https://doi.org/10.1128/EC.00151-12

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Wright SJ, Inchausti R, Eaton CJ, Krystofova S, Borkovich KA (2011) RIC8 is a guanine-nucleotide exchange factor for Galpha subunits that regulates growth and development in Neurospora crassa. Genetics 189:165–176. https://doi.org/10.1534/genetics.111.129270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Xiang Q, Glass NL (2002) Identification of vib-1, a locus involved in vegetative incompatibility mediated by het-c in Neurospora crassa. Genetics 162:89–101

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang Q, Poole SI, Borkovich KA (2002) A G-protein beta subunit required for sexual and vegetative development and maintenance of normal G alpha protein levels in Neurospora crassa. Eukaryot Cell 1:378–390. https://doi.org/10.1128/EC.1.3.378

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Ziv C, Feldman D, Aharoni-Kats L, Chen S, Liu Y, Yarden O (2013) The N-terminal region of the Neurospora NDR kinase COT1 regulates morphology via its interactions with MOB2A/B. Mol Microbiol 90:383–399. https://doi.org/10.1111/mmi.12371

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of LMC is supported by the Spanish Ministry of Science, Innovation and Universities (BIO2015-67148-R) and European Funds (European Regional Development Fund, ERDF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carmen Ruger-Herreros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruger-Herreros, C., Corrochano, L.M. Conidiation in Neurospora crassa: vegetative reproduction by a model fungus. Int Microbiol 23, 97–105 (2020). https://doi.org/10.1007/s10123-019-00085-1

Download citation

Keywords

  • Asexual development
  • Conidiation
  • Neurospora
  • Sporulation