Skip to main content

Advertisement

Log in

Actinobacteria—a promising natural source of anti-biofilm agents

  • Review
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

A biofilm is a community of microorganisms attached to a surface and embedded in a matrix of extracellular polymeric substances. Biofilms confer resistance towards conventional antibiotic treatments; thus, there is an urgent need for newer and more effective antimicrobial agents that can act against these biofilms. Due to this situation, various studies have been done to investigate the anti-biofilm effects of natural products including bioactive compounds extracted from microorganisms such as Actinobacteria. This review provides an insight into the anti-biofilm potential of Actinobacteria against various pathogenic bacteria, which hopefully provides useful information, guidance, and improvements for future antimicrobial studies. Nevertheless, further research on the anti-biofilm mechanisms and compound modifications to produce more potent anti-biofilm effects are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abd-Elanby H, Abo-Elala G, Abdel-Raouf U, Abd-Elwahab A, Hamed M (2016) Antibacterial and anticancer activity of marine Streptomyces parvus: optimization and application. Biotechnol Biotechnol Equip 30:1

    Article  CAS  Google Scholar 

  • Abu Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Factories 10:74

    Article  CAS  Google Scholar 

  • Agarwal A, Singh KP, Jain A (2010) Medical significance and management of staphylococcal biofilm. FEMS Immunol Med Microbiol 58:147–160

    Article  CAS  PubMed  Google Scholar 

  • Alihosseini F, Ju KS, Lango J, Hammock BD, Sun G (2008) Antibacterial colorants: characterization of prodiginines and their applications on textile materials. Biotechnol Prog 24:742–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine N, Wilson PA, Kerkar S, Thomas S (2012) Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm. Curr Microbiol 64:338–342

    Article  CAS  PubMed  Google Scholar 

  • Azman AS, Othman I, Fang CM, Chan KG, Goh BH, Lee LH (2017) Antibacterial, anticancer and neuroprotective activities of rare actinobacteria from mangrove forest soils. Indian J Microbiol 57:177–187

    Article  PubMed  Google Scholar 

  • Bakkiyaraj D, Pandian S (2010) In-vitro and in-vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms. Biofouling 26:711–717

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian S, Othman EM, Kampik D, Stopper H, Hentschel U, Ziebuhr W, Oelschlaeger TA, Abdelmohsen UR (2017) Marine sponge-derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Front Microbiol 8:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Banat IM, Diaz De Rienzo MA, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98:9915–9929

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    Article  PubMed  Google Scholar 

  • Berdy J (2012) Thought and facts about antibiotic: where we are now and where we are heading. J Antibiot 65:385–395

    Article  CAS  Google Scholar 

  • Berne C, Kysela DT, Brun YV (2011) A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol 77(4):815–829

    Google Scholar 

  • Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23(2):382–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Camins BC (2013) Prevention and treatment of hemodialysis-related bloodstream infections. Semin Dial 26:476–481

    Article  PubMed  Google Scholar 

  • Chenoweth C, Saint S (2013) Preventing catheter-associated urinary tract infections in the intensive care unit. Crit Care Clin 29:19–32

    Article  PubMed  Google Scholar 

  • Claverías FP, Undabarrena A, Gonzalez M, Seeger M, Camara B (2015) Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaiso bay, Chile. Front Microbiol 6:1–11

    Article  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80:91–138

    Article  CAS  PubMed  Google Scholar 

  • Dufour D, Leung V, Lévesque CM (2010) Bacterial biofilm: structure, function, and antimicrobial resistance. Endod Top 22(1):2–16

    Article  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–238

    Article  CAS  PubMed  Google Scholar 

  • Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-bsed antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276–301

    Article  CAS  PubMed  Google Scholar 

  • Hengzhuang W, Wu H, Ciofu O, Song Z, Hǿiby N (2011) Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55:4469–4474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hengzhuang W, Wu H, Ciofu O, Song Z, Hǿiby N (2012) In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother 56(5):2683–2690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hennig S, Wai SN, Ziebuhr W (2007) Spontaneous switch to PIA-independent biofilm formation in an Ica-positive Staphylococcus epidermidis isolate. Int J Med Microbiol 297:117–122

    Article  CAS  PubMed  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikuma K, Decho AW, Lau BLT (2013) The extracellular bastions of bacteria—a biofilm way of life. Nat Edu Knowledge 4:2

    Google Scholar 

  • Kim YG, Lee JH, Kim CJ, Lee JC, Ju YJ, Cho MH, Lee J (2012) Antibiofilm activity of Streptomyces sp. BF230 and Kribbella sp. 1562 against Pseudomonas aeruginosa. Appl Microbiol Biotechnol 96:1607–1617

    Article  CAS  PubMed  Google Scholar 

  • Lazâr V, Chifiriuc MC (2010) Medical significance and new therapeutical strategies for biofilm associated infections. Roum Arch Microbiol Immunol 69:125–138

    PubMed  Google Scholar 

  • Lee JH, Kim YG, Kim CJ, Lee JC, Cho MH, Lee J (2012) Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation. Appl Microbiol Biotechnol 96:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Leroy C, Delbarre-Ladrat C, Ghillebaert F, Compere C, Combes D (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling. 24:11–22

    Article  CAS  PubMed  Google Scholar 

  • Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 3(3). https://doi.org/10.1128/microbiolspec.MB-0011-2014

  • Majed R, Faille C, Kallassy M, Gohar M (2016) Bacillus cereus biofilms—same, only different. Front Microbiol 7:1054–1054

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadipanah F, Wink J (2015) Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol 6:1541

    PubMed  Google Scholar 

  • Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224

    Article  CAS  PubMed  Google Scholar 

  • O'Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  CAS  PubMed  Google Scholar 

  • Papireddy K, Smilkstein M, Kelly JX, Shweta SSM, Alhamadsheh M, Haynes SW, Challis GL, Reynolds KS (2011) Antimalarial activity of natural and synthetic prodiginines. J Med Chem 11:5296–5306

    Article  CAS  Google Scholar 

  • Park JH, Lee JH, Kim CJ, Lee JC, Cho MH, Lee J (2012) Extracellular protease in actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnol Lett 34:655–661

    Article  CAS  PubMed  Google Scholar 

  • Park SR, Tripathi A, Wu J, Schultz PJ, Yim I, McQuade TJ, Yu F, Arevang CJ, Mensah AY, Giselle TC et al (2016) Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat Commun 7:10710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penesyan A, Gillings M, Paulsen IT (2015) Antibiotic discovery: combating bacterial resistance in cells and in biofilm communities. Molecules. 20(4):5286–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raveh A, Delekta PC, Dobry CJ, Peng W, Schultz PJ, Blakely PK, Tai AW, Matainaho T, Irani DN, Sherman DH, Miller DJ (2013) Discovery of potent broad spectrum antivirals derived from marine actinobacteria. PLoS One 8:e82318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rendueles O, Kaplan JB, Ghigo JM (2012) Antibiofilm polysaccharides. Environ Microbiol 15(2):334–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues LR (2011) Inhibition of bacterial adhesion on medical devices. Adv Exp Med Biol 715:351–367

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 9:522–554

    Article  CAS  PubMed  Google Scholar 

  • Saleem HG, Aftab U, Sajid I, Abbas Z, Sabri AN (2015) Effect of crude extracts of selected actinomycetes on biofilm formation of A. schindleri, M. aci, and B. cereus. J Basic Microbiol 55:645–651

    Article  PubMed  Google Scholar 

  • Schallenberger MA, Niessen S, Shao CX, Fowler BJ, Romesberg FE (2012) Type 1 signal peptidase and protein secretion in Staphylococcus aureus. J Bacteriol 194:2677–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simoes M (2011) Antimicrobial strategies effective against infectious bacterial biofilms. Curr Med Chem 18:2129–2145

    Article  CAS  PubMed  Google Scholar 

  • Spadari C, Antunes T, Teixeira R, Minotto E, Fuentefria AM, Van der Sand S (2015) Antifungal activity of actinobacteria against fungus isolates of clinical importance. Brazilian J Biol Sci 11:439–443

    Google Scholar 

  • Stubbendieck RM, Vargas-Bautista C, Straight PD (2016) Bacterial communities: interactions to scale. Front Microbiol 7:1234

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Ohtaguro N, Yoshida Y, Hirai M, Matsuo H, Yamada Y, Imamura N, Tsuchiya T (2015) A compound inhibits biofilm formation of Staphylococcus aureus from Streptomyces. Biol Pharm Bull 38:889–892

    Article  CAS  PubMed  Google Scholar 

  • Thenmozhi R, Nithyanand P, Rathna J, Pandian SK (2009) Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immu Med Microbiol 57:284–294

    Article  CAS  Google Scholar 

  • Uhlich GA, Cooke PH, Solomon EB (2006) Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72:2564–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waturangi DE, Rahayu BS, Lalu KY, Mulyono N (2016) Characterization of bioactive compound from actinomycetes for antibiofilm activity against Gram-negative and Gram-positive bacteria. Malaysian J Microbiol 12:291–299

    CAS  Google Scholar 

  • You J, Xue X, Cao L, Lu X, Wang J, Zhang L, Zhou S (2007) Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 76:1137–1144

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grant from Yayasan Pahang (GA004-2018) awarded to Dr. Adzzie Shazleen Azman.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adzzie-Shazleen Azman or Sazaly AbuBakar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azman, AS., Mawang, CI., Khairat, JE. et al. Actinobacteria—a promising natural source of anti-biofilm agents. Int Microbiol 22, 403–409 (2019). https://doi.org/10.1007/s10123-019-00066-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-019-00066-4

Keywords

Navigation