Skip to main content
Log in

Optimization of γ-polyglutamic acid synthesis using response surface methodology of a newly isolated glutamate dependent Bacillus velezensis Z3

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

A new glutamate-dependent γ-polyglutamic acid (γ-PGA) producer Z3 isolated from soil samples in Daxinganling forest region of China was identified, and its optimal medium components were investigated using response surface methodology. Strain Z3 was identified as Bacillus velezensis by physiology and biochemistry and 16S rDNA sequence analysis. This is the first report of glutamate-dependent B. velezensis with the ability to synthesize γ-PGA. Then, the optimum γ-PGA yield (5.58 g/L) was achieved with glutamate 86 g/L, glucose 36 g/L, yeast extract powder 5.5 g/L, and NaH2PO4 7.5 g/L. Furthermore, activities of enzymes participating in glutamate synthesis were assessed, and the results showed that lower ketoglutaric dehydrogenase activity (KGDH) and higher glutamate dehydrogenase activity (GDH) resulted in higher γ-PGA yield. Identification of glutamate-dependent γ-PGA producer named B. velezensis Z3 enriches microbiological resources with γ-PGA-producing capacity. B. velezensis optimization of nutrients and analysis of enzymes activities will not only help to increase γ-PGA productivity but also to understand the γ-PGA synthesis mechanism in B. velezensis Z3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashiuchi M, Kamei T, Baek DH, Shin SY, Sung MH, Soda K, Yagi T, Misono H (2001) Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence. Appl Microbiol Biotechnol 57:764–769

    Article  PubMed  CAS  Google Scholar 

  • Bajaj IB, Singhal RS (2009) Enhanced production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Appl Biochem Biotechnol 159:133–141

    Article  PubMed  CAS  Google Scholar 

  • Bajaj IB, Singhal R (2011) Poly (glutamic acid)—an emerging biopolymer of commercial interest. Bioresour Technol 102:5551–5561

    Article  PubMed  CAS  Google Scholar 

  • Bajaj IB, Lele SS, Singhal RS (2009) A statistical approach to optimization of fermentative production of poly(gamma-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresour Technol 100:826–832

    Article  PubMed  CAS  Google Scholar 

  • Bhat AR, Irorere VU, Bartlett T, Hill D, Kedia G, Morris MR, Charalampopoulos D, Radecka I (2013) Bacillus subtilis natto: a non-toxic source of poly-gamma-glutamic acid that could be used as a cryoprotectant for probiotic bacteria. AMB Express 3:36–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birrer GA, Cromwick AM, Gross RA (1994) Gamma-poly(glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int J Biol Macromol 16:265–275

    Article  PubMed  CAS  Google Scholar 

  • Buescher JM, Margaritis A (2007) Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol 27:1–19

    Article  PubMed  CAS  Google Scholar 

  • Candela T, Moya M, Haustant M, Fouet A (2009) Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol 55:627–632

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Chen SW, Sun M, Yu ZN (2005) Medium optimization by response surface methodology for poly-γ-glutamic acid production using dairy manure as the basis of a solid substrate. Appl Microbiol Biothchnol 69:390–396

    Article  CAS  Google Scholar 

  • Chen J, Shi F, Zhang B, Zhu F, Cao W, Xu Z, Xu G, Cen P (2010) Effects of cultivation conditions on the production of gamma-PGA with Bacillus subtilis ZJU-7. Appl Biochem Biotechnol 160:370–377

    Article  PubMed  CAS  Google Scholar 

  • Cromwick AM, Gross RA (1995) Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and gamma-poly(glutamic acid) formation. Int J Biol Macromol 17:259–267

    Article  PubMed  CAS  Google Scholar 

  • Cromwick AM, Birrer GA, Gross RA (1996) Effects of pH and aeration on gamma-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng 50:222–227

    Article  PubMed  CAS  Google Scholar 

  • Hezayen FF, Rehm BH, Tindall BJ, Steinbuchel A (2001) Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol 51:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Qin P, Xu Z, Zhu R, Meng Y (2011a) Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(gamma-glutamic acid). Bioresour Technol 102:3595–3598

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Du Y, Xu G, Zhang H, Zhu F, Huang L, Xu Z (2011b) High yield and cost-effective production of poly(glutamic acid) with Bacillus subtilis. Eng Life Sci 11(3):291–297

    Article  CAS  Google Scholar 

  • Ivanovics G, Bruckner V (1937) The chemical nature of the immuno-specific capsule substance of Anthrax Bacillus. Naturwissenschaften 25:250

    Article  CAS  Google Scholar 

  • Kumar R, Pal P (2015) Fermentative production of poly (gamma-glutamic acid) from renewable carbon source and downstream purification through a continuous membrane-integrated hybrid process. Bioresour Technol 177:141–148

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S (2016) Microbial synthesis of poly-gamma-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels 9:134–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moraes LP, Alegre RM, Brito PN (2012) Optimisation of poly(γ-glutamic acid) production by Bacillus velezensis NRRL B-23189 in liquid fermentation with molasses as the carbon source without addition of glutamic acid. Int Rev Chem. Engineer 4:618–623

    Google Scholar 

  • Ogawa Y, Yamaguchi F, Yuasa K, Tahara Y (1997) Efficient production of gamma-Polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosci Biotechnol Biochem 61:1684–1687

    Article  PubMed  CAS  Google Scholar 

  • Richard A, Margaritis A (2003) Optimization of cell growth and poly(glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnol Lett 25:465–468

    Article  PubMed  CAS  Google Scholar 

  • Shih IL, Van YT (2001) The production of poly-(gamma-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79:207–225

    Article  PubMed  CAS  Google Scholar 

  • Shih IL, Van YT, Sau YY (2003) Antifreeze activities of poly(gamma-glutamic acid) produced by Bacillus licheniformis. Biotechnol Lett 25:1709–1712

    Article  PubMed  CAS  Google Scholar 

  • Shih IL, Wu PJ, Shieh CJ (2005) Microbial production of a poly(γ-glutamic acid) derivative by Bacillus subtilis. Process Biochem 40:2827–2832

    Article  CAS  Google Scholar 

  • Sirisansaneeyakul S, Cao M, Kongklom N, Chuensangjun C, Shi Z, Chisti Y (2017) Microbial production of poly-gamma-glutamic acid. World J Microbiol Biotechnol 33:173–181

    Article  PubMed  CAS  Google Scholar 

  • Soliman NA, Berekaa MM, Abdel-Fattah YR (2005) Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett-Burman experimental design to evaluate culture requirements. Appl Microbiol Biotechnol 69:259–267

    Article  PubMed  CAS  Google Scholar 

  • Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M (2005) Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec 5:352–366

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Xu H, Liang J, Yao J (2010) Contribution of glycerol on production of poly(gamma-glutamic acid) in Bacillus subtilis NX-2. Appl Biochem Biotechnol 160:386–392

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Xu H, Zhang D, Ouyang P (2011) A novel glutamate transport system in poly(gamma-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833. Appl Biochem Biotechnol 164:1431–1443

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Tong Z, Chen Y, Mo Y, Feng H, Li P, Qu X, Jin S (2017) Bioresponsive materials for drug delivery based on carboxymethyl chitosan/poly(gamma-glutamic acid) composite microparticles. Mar Drugs 15:127–140

    Article  PubMed Central  Google Scholar 

  • Yao J, Xu H, Shi N, Cao X, Feng X, Li S, Ouyang P (2010) Analysis of carbon metabolism and improvement of gamma-polyglutamic acid production from Bacillus subtilis NX-2. Appl Biochem Biotechnol 160:2332–2341

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Chen Z, Ye H, Liu P, Li Z, Wang Y, Li Q, Yan S, Zhong CJ, He N (2017) Effect of glucose on poly-gamma-glutamic acid metabolism in Bacillus licheniformis. Microb Cell Factories 16:22. https://doi.org/10.1186/s12934-017-0642-8

    Article  CAS  Google Scholar 

  • Zeng W, Lin Y, Qi Z, He Y, Wang D, Chen G, Liang Z (2013) An integrated high-throughput strategy for rapid screening of poly(gamma-glutamic acid)-producing bacteria. Appl Microbiol Biotechnol 97:2163–2172

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhu J, Zhu X, Cai J, Zhang A, Hong Y, Huang J, Huang L, Xu Z (2012) High-level exogenous glutamic acid-independent production of poly-(gamma-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. Bioresour Technol 116:241–246

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by China Scholarship Council (Grant No.201608130219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Ma, X. & Liu, J. Optimization of γ-polyglutamic acid synthesis using response surface methodology of a newly isolated glutamate dependent Bacillus velezensis Z3. Int Microbiol 21, 143–152 (2018). https://doi.org/10.1007/s10123-018-0011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-018-0011-4

Keywords

Navigation